Appendix E2 Phase II Environmental Site Assessment

Commercial Property 1515 West 178th Street Gardena, California Stantec Project No: 185803664

Prepared for: The Olson Company 3010 Old ranch Parkway, Suite 100 Seal Beach, CA 90740

Prepared by: Stantec Consulting Services Inc. 25864-F Business Center Drive Redlands, California

July 18, 2016

Sign-off Sheet

This PHASE II ENVIRONMENTAL SITE ASSESSMENT was prepared by Stantec Consulting Services Inc. for The Olson Company. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Prepared by

(signature)

Kristen Daly, Project Geologist

Reviewed by

(signature)

Jim DeWoody, Senior Scientist

Approved by

(signature)

Kyle Emerson, Managing Principal Geologist, C.E.G. 1271

Table of Contents

EXEC	CUTIVE SUMMARY	
1.0	INTRODUCTION	1 1
1.1	SITE DESCRIPTION AND OPERATIONS	
1.2	SITE GEOLOGY AND HYDROGEOLOGY	
2.0	SITE BACKGROUND AND PREVIOUS SUBSURFACE INVESTIGATION	ONS2.1
3.0	FIELD INVESTIGATION PROGRAM	3.1
3.1	SOIL SAMPLING	
3.2	SOIL VAPOR SAMPLING	3.2
3.3	GROUNDWATER SAMPLING	3.3
3.4	DECONTAMINATION PROCEDURES	
3.5	WASTE DISPOSAL	
4.0	LABORATORY TESTING PROGRAM	4.1
5.0	INVESTIGATION RESULTS	5.1
5.1	FIELD OBSERVATIONS	
5.2	ANALYTICAL RESULTS	5.1
	5.2.1 Soil Samples	5.1
	5.2.2 Soil Vapor Samples	
	5.2.3 Groundwater Samples	5.2
6.0	CONCLUSIONS AND RECOMMENDATIONS	6.1
7.0	LIMITATIONS	7.1
8.0	REFERENCES	8.1

LIST OF TABLES

- Table 1 Summary of Soil Analytical Results
- Table 2 Summary of Soil Vapor Analytical Results
- Table 3 Summary of Groundwater Analytical Results

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Site Map with Soil Vapor Concentrations
- Figure 4 Site Map with Groundwater Concentrations

LIST OF APPENDICES

Appendix A – Laboratory Data Sheets and QA/QC Results

Executive Summary

The subject property is addressed as 1515 West 178th Street, in the City of Gardena, County of Los Angeles, California (the "Site"). The Site consists of two contiguous parcels totaling approximately 5.63 acres of land developed as warehouse building with associated parking area. The surrounding area is a mixture of commercial and residential properties.

The Site and vicinity appear to have been used for agricultural purposes until the 1960's. SECOR (now Stantec) conducted a shallow soil assessment in 2004 to evaluate the potential presence of residual pesticides in shallow soils from historic agricultural use of the Site. The assessment detected no pesticides at levels above residential screening levels. A site-wide assessment of the Site regarding arsenic and lead (associated with potential herbicide application) was performed by Terracon in 2007. The results of shallow soil sampling by Terracon concluded that neither compound was present at levels above residential screening levels. Based on these assessments, Stantec concludes that the historical agricultural use of the Site represents neither a recognized environmental condition nor a human health risk in light of the contemplated residential use of the Site. Stantec recommends no further investigation regarding this issue.

A soil and soil gas survey was also completed by Terracon in 2007 under the direction of Los Angeles County Fire Department (LACFD). Terracon's assessment identified limited impacts to soil and soil gas on the Site at levels below commercial screening levels. Chlorinated compounds, namely tetrachloroethylene (PCE) and trichloroethylene (TCE), were reported at multiple locations at concentrations that slightly exceeded the residential use screening levels. Based on this information, LACFD issued written regulation closure for the Site in 2008 – but the closure was contingent upon the continued commercial use of the Site.

Since there have been continued automobile repair operations reported at the Site since 2007, and in light of the contemplated change in use from commercial purposes to residential purposes, Stantec recommended performing a new assessment to evaluate whether the detected soil vapor concentration reported in 2007 had changed. Accordingly, Stantec conducted additional soil, soil gas sampling at the Site to evaluate the existing impacts.

In April and May of 2016, Stantec personnel oversaw two rounds of assessment that included the installation of soil vapor probes and soil sampling at seventeen (17) locations at the Site. The assessments identified concentrations of contaminants in soil vapor at levels above current residential screening levels, primarily along the eastern portion of the Site. Soil samples were collected during the May 2016 investigation, but none of the results reported VOCs above laboratory reporting limits (i.e., the results were "non-detect"). The two (2) samples which were also analyzed for TPH similarly reported no concentrations at levels above laboratory reporting limits (i.e., "non-detect").

i

Seventeen (17) soil vapor samples were collected from a depth of five (5) feet below ground surface (bgs) at the Site. The samples reported the presence of PCE, TCE, benzene, 1,1-dichloroethene (1,1-DCE) and methylene chloride at concentrations above laboratory reporting limits. Of these VOCs, PCE was reported above its DTSC HERO Note 3 value of 0.48 microgram per liter (ug/L) for residential uses, with a maximum concentration of 68 ug/L reported in location SV-13 (northeast portion of the Site). Benzene was reported slightly above its DTSC HERO Note 3 value of 0.097 ug/L with a maximum concentration of 0.17 ug/L reported at SV-11. The detected soil vapor impacts appear to affect the eastern 1/3 of the Site above the DTSC HERO Note 3 value of 0.48 microgram per liter (ug/L) for residential uses.

To evaluate if the contaminants detected in soil vapor has affected groundwater, Stantec completed an additional assessment in June of 2016. The assessment included the drilling of three (3) borings into groundwater for the collection of hydropunch water samples. Soils encountered during the investigation consisted mainly of silty sand to the maximum depth of 40 feet bgs. Groundwater was encountered at a depth of between 30 and 40 feet bgs in the borings. Stantec identified no staining or hydrocarbon odors in any of the borings.

The groundwater samples reported TPH and VOCs at levels above the Site screening levels, with the highest PCE concentration reported in groundwater at the northeast corner of the Site – in the vicinity of the highest detected contaminant concentrations in soil vapor. Specifically, PCE was reported in HP-1 at 70 μ g/L. PCE concentrations in groundwater decrease toward the south, but elevated concentrations of 1,1-DCE were reported at the southern property line of the Site. The detected concentrations of PCE exceed the maximum contaminant level (MCL) for groundwater, which is currently set at 5 μ g/L.

The groundwater flow gradient at the Site is reported to be toward the northeast, based on a recent groundwater monitoring report from the off-site property located to the south. This property known as Bee Chemical and has a known groundwater contamination issue composed of the same VOCs that were detected at the Site. The VOC impacts in groundwater along the southern property line appear to be commingled with the plume from the former Bee Chemical Facility located to the south of the Site. The limits of this groundwater contamination both on-site and off-site have not been defined to date.

Based on the data collected to date, impact to soil vapor by VOCs - particularly PCE - is present in the northeastern portion of the Site. No source has been identified in soil on the Site. Groundwater has been impacted by VOCs, with the highest reported concentration in the northeastern portion of the Site in the vicinity of highest soil vapor impact. The highest soil vapor concentrations appear to be the source of the elevated groundwater impact in the northeast corner of the Site. The lower concentration groundwater impact in the southern portion of the Site is likely the result of an offsite source migrating onto the Site.

Stantec recommends submitting the data collected to date to LACFD with a request for regulatory oversight. Based on LACFD's review and discussions to be conducted with LACFD, Stantec will then be able to make a determination as to whether additional on-site and/or off-Site assessment is necessary in regard to both soil vapor and groundwater. Following completion of any LACFD-required assessment, Stantec could then – as necessary – be able to

prepare a remedial action plan (RAP) in order to complete any work required by LACFD for redevelopment of the Site for residential purposes.

Should there be any questions regarding the information provided within the accompanying report, please do not hesitate to contact the undersigned at (909) 335-6116.

Respectfully submitted,

STANTEC CONSULTING SERVICES INC.

Kristen Daly

Project Geologist

Kyle D. Emerson, CEG 1271 Managing Principal Geologist

INTRODUCTION
July 18, 2016

1.0 INTRODUCTION

This report documents the methodology and results of a soil, groundwater and soil vapor assessment completed at the Site. This assessment was conducted in accordance with a Proposal for Soil Vapor Sampling dated March 23, 2016, a Proposal for Additional Soil and Soil Vapor Sampling dated April 21, 2016, and a Proposal for Groundwater Sampling dated June 2, 2016 by Stantec. The work completed and results of that sampling are described in the sections below.

1.1 SITE DESCRIPTION AND OPERATIONS

The Site is addressed as 1515 West 178th Street, in the City of Gardena, County of Los Angeles, California and consists of two contiguous parcels totaling approximately 5.63 acres of land developed as warehouse building with associated parking area. The surrounding area is a mixture of commercial and residential properties.

1.2 SITE GEOLOGY AND HYDROGEOLOGY

The Site is located in an area of recent alluvial fan deposits from the Quaternary age. These deposits typically consist of tideland and flood-plain deposits. Regionally, the Site is located within the southwestern block of the Los Angeles Basin, within the Peninsular Ranges Geomorphic Province of California. Shallow sediments in this area of the Los Angeles Basin consist of recentage gravel, sand, silt, and clay deposits by the Los Angeles River and Dominguez Channel. In some areas, these sediments are expected to be approximately 50 to 90 feet thick. The near-surface sediments are underlain by sedimentary rocks of primarily recent to Miocene age. According to past assessments of the Site, the Site is underlain by silty sand (SECOR, 2004c).

The Site is at an average elevation of approximately 35 feet above mean sea levels (msl). The regional topographic is relatedly flat with a local gradient slightly to the northeast towards the Dominguez Channel (United States Geological Survey [USGS], 1964).

The closest mapped active fault is the Newport-Inglewood-Rose Canyon Fault Zone located approximately 2.8 miles northeast of the Property. According to official maps of California, the Site is not located within an Alquist-Priolo (AP) Earthquake Fault Zone boundary (California Geological Survey [CGS], 2010).

The Property lies within the Coastal Plain of Los Angeles groundwater basin, West Coast sub basin (4-11.03). The basin is bounded on the north by the Ballona Escarpment, an abandoned erosional channel from the Los Angeles River; on the east by the Newport-Inglewood fault zone; and on the south and west of the Pacific Ocean and consolidated rocks of the Palos Verdes Hills (Department of Water Resources [DWR], 1999). Water-bearing units include the unconsolidated and semi-consolidated marine and alluvial sediments of Holocene, Pleistocene, and Pliocene ages. Groundwater data attained from the Geotracker website for a facility located 0.35 miles of the north of the Property shows groundwater at elevation of 12-15 feet above msl (approximately 20 feet bgs) as of September 2015 (Geotracker, 2016). However, groundwater data from a facility located 200 feet to the south of the Property shows groundwater gradient to the northwest in 2014. Groundwater was encountered at the Site between 30 and 40 feet bgs during the Site assessment.

SITE BACKGROUND AND PREVIOUS SUBSURFACE INVESTIGATIONS July 18, 2016

2.0 SITE BACKGROUND AND PREVIOUS SUBSURFACE INVESTIGATIONS

The Site and vicinity appear to have been used for agricultural purposes until the 1960's. SECOR (now Stantec) conducted a shallow soil assessment in 2004 to evaluate the potential presence of residual pesticides in shallow soils from historic agricultural use of the Site. That assessment did not detect pesticides above residential screening levels. A site-wide assessment of the Site regarding arsenic and lead (associated with potential herbicides) was performed by Terracon in 2007. The results of shallow soil sampling by Terracon concluded that neither compound exists at levels above residential screening levels. Based on these assessments the historical agricultural use of the Site represents neither a recognized environmental condition nor a human health risk in light of the contemplated residential use of the Site, and Stantec recommended no further investigation regarding this issue.

A soil and soil gas survey was also completed by Terracon in 2007 under the direction of Los Angeles County Fire Department (LACFD). Terracon's assessment identified limited impacts to soil and soil gas on the Site at levels below commercial screening levels. Chlorinated compounds, namely tetrachloroethylene (PCE) and trichloroethylene (TCE), were reported at concentrations that slightly exceed residential use screening levels in several locations. Based on this information the LACFD issued a Site closure in 2008. That closure was for continued commercial use of the Site.

Since there have been reported continued automobile repair operations at the Site since 2007, and the use was proposed to change from the commercial use to residential, Stantec recommended that a new assessment be conducted to evaluate if the detected soil vapor concentration reported in 2007 had changed. Stantec conducted additional soil, soil gas sampling at the Site to evaluate the existing impact.

FIELD INVESTIGATION PROGRAM July 18, 2016

3.0 FIELD INVESTIGATION PROGRAM

On April 8, 2016, Stantec provided oversight for the advancement and installation on ten (10) soil vapor probes across the Site. Based on the elevated soil vapor detection reported in April 2016, Stantec conducted an additional soil and soil vapor survey on May 19, 2016 in the northeast corner of the Site. This additional assessment focused on the evaluation of the lateral and vertical extent of soil vapor impact in this area. The findings of those assessments are discussed below.

In June 2016, Stantec advanced a total of three (3) borings at the Site into groundwater (one location in the northeast, one along the eastern property line, and one location in the southeast). This assessment was conducted to evaluate if groundwater had been affected by the detected elevated soil vapor at the Site. The scopes of work for these assessments consisted of the general elements discussed in the following sections.

3.1 SOIL SAMPLING

Soil Boring and Sampling Procedures

Soil was collected from the boring locations during the May 2016 investigation (not during the April 2016 assessment). Where applicable, paved surfaces were cored to expose underlying soils and hand clearing equipment (hand auger) was used to collect soil for samples at 5 feet or less in depth. Upon extracting the auger bucket at each depth interval, the soils contained therein were placed in a 4-ounce glass jar and labeled with the appropriate identification information (boring number, sample depth, sample collection date, and sample collection time).

Once the five foot depth had been reached, each of the boring locations was further advanced using a Geoprobe direct push rig. During advancement at each location, sampling of subsurface soils was performed at a depth of approximately 15 foot bgs using a 12-inch long by 1.25-inch inner diameter stainless steel sampler with acetate inserts. At each sampling interval, the sampler was driven into undisturbed soil using a hydraulic ram on the Geoprobe rig until 12 inches of penetration was achieved. Upon advancement of the sampler to the desired sampling depth interval, the steel rods were extracted from the boring and the sample sleeves were removed.

Upon extracting the sampler at each depth interval, the soil samples were collected from the bottom portion of the acetate liner. In selected borings, the soils were visually examined by Stantec field personnel and classified in accordance with the unified soil classification system (USCS). All soil samples were carefully packaged for chemical analysis by sealing the sleeve with Teflon sheets, plastic end-caps, and non-VOC tape. After the sleeve was sealed, it was labeled with the appropriate identification information (boring number, sample depth, sample collection date, and sample collection time). The samples were then logged on a chain-of-custody form and placed in an ice-filled cooler for transport to the laboratory. Copies of the chain-of-custody forms are included as Appendix A.

FIELD INVESTIGATION PROGRAM July 18, 2016

3.2 SOIL VAPOR SAMPLING

Stantec performed soil vapor sampling during the April 2016 and May 2016 investigations. Vapor probes were set at 5 feet bgs during the initial investigation in April 2016, and 5 and 15 feet bgs in each location in May 2016 with all samples analyzed for VOCs by EPA test method 8260b. The soil vapor sampling probe locations and results are shown on Figures 2 and 3.

Subsurface soil vapor sampling was performed in general accordance with the July 2015 Cal-EPA Advisory for active soil gas investigations. Each of the soil gas sample probes was installed using a Geoprobe drilling rig utilizing a hydraulically driven direct push system to advance the proposed boring to 6 or 16 feet bgs. Each sample boring was constructed with a 6-inch sampling screen set between 5 and 6 feet bgs in all borings and additionally between 15 and 16 feet bgs in the May 2016 investigation. The sampling screen was then connected to the ground surface via dedicated Nylaflow ® nylon tubing. The annulus around the exposed probe tip was backfilled with a silica sand filter pack to an elevation of about six inches above the sampling screen. Above the filter pack, a 6 to 12-inch transition zone was constructed using dry bentonite granules. From the top of the dry bentonite transition zone to the ground surface, hydrated bentonite granules were utilized to seal the annular space. At the surface the exposed nylon tubing was capped with tight fitting plastic end-caps, labeled to indicate sampling depth. After placement of the soil gas sampling points, subsurface conditions were allowed to equilibrate for at least 48 hours prior to leak testing and sample collection.

After at least 48 hours elapsed, a shut-in test was performed consisting of an above-ground apparatus of valves, line, and fitting located downstream from the top of the probe. The line was evacuated to a measured vacuum of approximately 100 inches of water column and the vacuum was shut in with closed valves on opposite ends of the sampling train. At this point, a vacuum gauge connected to the line was observed for at least one minute for any signs of a loss in vacuum.

One replicate sample per day was also collected and analyzed from a gas probe containing detectable concentrations of VOCs.

During soil gas sampling a leak check was performed using tracer gas of 1,1-difluoroethane. The tracer compound was applied to a clean rag and situated around the monitoring point to evaluate seal integrity. Seal integrity was confirmed by analyzing the collected soil gas samples for the tracer compound. No tracer gases were found in any of the samples.

FIELD INVESTIGATION PROGRAM July 18, 2016

3.3 GROUNDWATER SAMPLING

Stantec performed groundwater sampling at three (3) locations during the June 2016 investigation. Groundwater was encountered between 30 and 40 feet bgs with all samples analyzed for TPH and VOCs by EPA test methods 8015m and 8260b, respectively. The groundwater boring locations and results are shown on Figures 2 and 4.

Borings were advanced using a Geoprobe hydraulic ram with steel rods advanced in five-foot flights to the total depth of the boring. Upon verifying the presence of groundwater, a sampling screen was exposed at the bottom of the boring and groundwater was collected via a steel bailer or Teflon tubing lowered through the center of the rods. Groundwater was discharged from the bailer or tubing directly into 40 mL volatile organic analysis (VOA) vials and 1-L amber glass jars. The sample containers were labeled with appropriate identification information (boring number, sample collection date, sample collection time), recorded on a COC form and placed in an iced cooler for delivery to the off-site ELAP-certified laboratory. Copies of the COC forms are included in Appendix A.

3.4 DECONTAMINATION PROCEDURES

To maintain quality control during soil sampling, prior to each sampling interval, the sampling equipment was decontaminated in an Alconox scrub solution and double-rinsed, first with tap water followed by a final rinse using distilled water. Where single use disposable sampling equipment was used (i.e. disposable bailers, and Teflon tubing), the equipment was used once at the dedicated sampling interval and then discarded. In addition, prior to, and between each boring advanced, the hollow steel rods were cleaned following the same protocol.

3.5 WASTE DISPOSAL

All soil cuttings and purge/decon-water generated during the investigation were placed in DOT approved 16-gallon or 55-gallon drums and labeled with the appropriate identification. The drums are temporarily stored on-site pending removal and proper disposal.

LABORATORY TESTING PROGRAM July 18, 2016

4.0 LABORATORY TESTING PROGRAM

A total of fifteen (15) soil samples and three (3) groundwater samples collected during this investigation were delivered under chain-of-custody (Appendix A) to Eurofins Calscience Laboratories (Eurofins) based out of Garden Grove, California. Samples were analyzed for TPH and/or VOCs by EPA Test Methods 8015m and 8260b, respectively.

A total of twenty four (24) soil vapor samples plus two (2) replicates collected during this investigation were delivered under chain-of-custody (Appendix A) to H&P Mobile Geochemistry (H&P) based out of Carlsbad, California. All of the soil vapor samples were collected and analyzed for VOCs by EPA Test Method 8260b onsite by H&P in a mobile laboratory.

Eurofins and H&P are certified to perform hazardous waste testing by the State of California Department of Health Services, Environmental Laboratory Accreditation Program.

Analytical results are tabulated in Tables 1 through 3. Analytical laboratory test results are included in Appendix A and discussed in Section 5.2.

INVESTIGATION RESULTS July 18, 2016

5.0 INVESTIGATION RESULTS

5.1 FIELD OBSERVATIONS

In April and May 2016, Stantec personnel oversaw the installation of soil vapor probes and soil sampling at seventeen (17) locations at the Site. In June 2016, three (3) groundwater borings were advanced. Soils encountered during the investigation consisted mainly of silty sand to the maximum explored depth of 40 feet bgs. Groundwater was encountered at a depth of between 30 and 40 feet bgs in the groundwater borings. No staining or hydrocarbon odors were identified in any of the borings.

5.2 ANALYTICAL RESULTS

The laboratory test results are discussed below. Laboratory test results are summarized in attached Tables 1 through 3. The complete laboratory analytical test results are presented on the laboratory data sheets attached as Appendix A.

5.2.1 Soil Samples

Soil samples were collected during the May 2016 investigation. None of the soil samples reported VOCs above laboratory reporting limits (i.e., the results were "non-detect"). The two (2) samples which were also analyzed for TPH reported none above laboratory reporting limits.

The results of soil sample analysis are summarized in Table 1 and the complete laboratory report is attached as Appendix A.

5.2.2 Soil Vapor Samples

Soil vapor samples were collected from ten (10) locations at a depth of 5 feet at the Site in April 2016. The samples reported PCE, TCE, benzene, 1,1-DCE and methylene chloride above laboratory reporting limits. Of these VOCs, PCE was reported above its DTSC HERO Note 3 value of 0.48 ug/L in four (4) samples with a maximum concentration of 46 ug/L reported in location SV-7 (northeast portion of the Site). Benzene was reported above its DTSC HERO Note 3 value of 0.097 ug/L in three (3) samples with a maximum concentration of 0.10 ug/L reported in locations SV-6, SV-7 and SV-9.

Based on those results, seven (7) additional soil vapor borings were completed within the northeast portion of the Site in May 2016 where high PCE was reported (SV-7) to assess if remedial excavation and/or vapor barriers are required for this area of the Site. Soil vapor samples were collected from 5 and 15 feet bgs from these locations (SV-11 through SV-17) with the exception of SV-13 and SV-14 where the 15 foot probes could not be sampled due to high vacuum in the soil vapor probe. PCE, TCE, benzene, 1,1-DCE, methylene chloride and xylenes were reported above laboratory reporting limits. All samples reported PCE above the DTSC HERO Note 3 residential soil screening level, up to a maximum concentration of 68 ug/L in sample SV-

INVESTIGATION RESULTS July 18, 2016

13-5. Concentrations decreased with depth in several locations. TCE was reported above its U.S. EPA RSL value of 0.48 ug/L in four (4) locations with a maximum concentration of 3.1 ug/L reported in sample SV-15-15. Benzene was reported above its DTSC HERO Note 3 value of 0.097 ug/L in four (4) locations with a maximum concentration of 0.17 ug/L reported in sample SV-11-5.

The results of soil vapor sample analysis are summarized in Table 2 and the complete laboratory report is attached as Appendix A.

5.2.3 Groundwater Samples

The collected groundwater samples reported TPH and VOCs above the Site screening levels with the highest PCE concentration reported in groundwater the northeast corner of the Site in the vicinity of the highest soil vapor concentrations. PCE was reported in HP-1 at 70 μ g/L. PCE concentrations decrease toward the south, but elevated concentrations of 1,1-DCE were reported at the southern property line of the Site. The detected concentrations of PCE are above the maximum contaminant level (MCL) for groundwater currently set at 5 μ g/L.

CONCLUSIONS AND RECOMMENDATIONS July 18, 2016

6.0 CONCLUSIONS AND RECOMMENDATIONS

The subject property is addressed as 1515 West 178th Street, in the City of Gardena, County of Los Angeles, California (the "Site"). The Site consists of two contiguous parcels totaling approximately 5.63 acres of land developed as warehouse building with associated parking area. The surrounding area is a mixture of commercial and residential properties.

The Site and vicinity appear to have been used for agricultural purposes until the 1960's. SECOR (now Stantec) conducted a shallow soil assessment in 2004 to evaluate the potential presence of residual pesticides in shallow soils from historic agricultural use of the Site.

The assessment detected no pesticides at levels above residential screening levels. A site-wide assessment of the Site regarding arsenic and lead (associated with potential herbicide application) was performed by Terracon in 2007. The results of shallow soil sampling by Terracon concluded that neither compound was present at levels above residential screening levels. Based on these assessments, Stantec concludes that the historical agricultural use of the Site represents neither a recognized environmental condition nor a human health risk in light of the contemplated residential use of the Site. Stantec recommends no further investigation regarding this issue.

A soil and soil gas survey was also completed by Terracon in 2007 under the direction of Los Angeles County Fire Department (LACFD). Terracon's assessment identified limited impacts to soil and soil gas on the Site at levels below commercial screening levels. Chlorinated compounds, namely tetrachloroethylene (PCE) and trichloroethylene (TCE), were reported at multiple locations at concentrations that slightly exceeded the residential use screening levels. Based on this information, LACFD issued written regulation closure for the Site in 2008 – but the closure was contingent upon the continued commercial use of the Site.

Since there have been continued automobile repair operations reported at the Site since 2007, and in light of the contemplated change in use from commercial purposes to residential purposes, Stantec recommended performing a new assessment to evaluate whether the detected soil vapor concentration reported in 2007 had changed. Accordingly, Stantec conducted additional soil, soil gas sampling at the Site to evaluate the existing impacts.

In April and May of 2016, Stantec personnel oversaw two rounds of assessment that included the installation of soil vapor probes and soil sampling at seventeen (17) locations at the Site. The assessments identified concentrations of contaminants in soil vapor at levels above current residential screening levels, primarily along the eastern portion of the Site. Soil samples were collected during the May 2016 investigation, but none of the results reported VOCs above laboratory reporting limits (i.e., the results were "non-detect"). The two (2) samples which were also analyzed for TPH similarly reported no concentrations at levels above laboratory reporting limits (i.e., "non-detect").

Seventeen (17) soil vapor samples were collected from a depth of five (5) feet below ground surface (bgs) at the Site. The samples reported the presence of PCE, TCE, benzene, 1,1-

CONCLUSIONS AND RECOMMENDATIONS
July 18, 2016

dichloroethene (1,1-DCE) and methylene chloride at concentrations above laboratory reporting limits. Of these VOCs, PCE was reported above its DTSC HERO Note 3 value of 0.48 microgram per liter (ug/L) for residential uses, with a maximum concentration of 68 ug/L reported in location SV-13 (northeast portion of the Site). Benzene was reported slightly above its DTSC HERO Note 3 value of 0.097 ug/L with a maximum concentration of 0.17 ug/L reported at SV-11. The detected soil vapor impacts appear to affect the eastern 1/3 of the Site above the DTSC HERO Note 3 value of 0.48 microgram per liter (ug/L) for residential uses.

To evaluate if the contaminants detected in soil vapor has affected groundwater, Stantec completed an additional assessment in June of 2016. The assessment included the drilling of three (3) borings into groundwater for the collection of hydropunch water samples. Soils encountered during the investigation consisted mainly of silty sand to the maximum depth of 40 feet bgs. Groundwater was encountered at a depth of between 30 and 40 feet bgs in the borings. Stantec identified no staining or hydrocarbon odors in any of the borings.

The groundwater samples reported TPH and VOCs at levels above the Site screening levels, with the highest PCE concentration reported in groundwater at the northeast corner of the Site – in the vicinity of the highest detected contaminant concentrations in soil vapor. Specifically, PCE was reported in HP-1 at 70 μ g/L. PCE concentrations in groundwater decrease toward the south, but elevated concentrations of 1,1-DCE were reported at the southern property line of the Site. The detected concentrations of PCE exceed the maximum contaminant level (MCL) for groundwater, which is currently set at 5 μ g/L.

The groundwater flow gradient at the Site is reported to be toward the northeast, based on a recent groundwater monitoring report from the off-site property located to the south. This property known as Bee Chemical and has a known groundwater contamination issue composed of the same VOCs that were detected at the Site. The VOC impacts in groundwater along the southern property line appear to be commingled with the plume from the former Bee Chemical Facility located to the south of the Site. The limits of this groundwater contamination both on-site and off-site have not been defined to date.

Based on the data collected to date, impact to soil vapor by VOCs - particularly PCE - is present in the northeastern portion of the Site. No source has been identified in soil on the Site. Groundwater has been impacted by VOCs, with the highest reported concentration in the northeastern portion of the Site in the vicinity of highest soil vapor impact. The highest soil vapor concentrations appear to be the source of the elevated groundwater impact in the northeast corner of the Site. The lower concentration groundwater impact in the southern portion of the Site is likely the result of an offsite source migrating onto the Site.

Stantec recommends submitting the data collected to date to LACFD with a request for regulatory oversight. Based on LACFD's review and discussions to be conducted with LACFD, Stantec will then be able to make a determination as to whether additional on-site and/or off-Site assessment is necessary in regard to both soil vapor and groundwater. Following completion of any LACFD-required assessment, Stantec could then – as necessary – be able to prepare a remedial action plan (RAP) in order to complete any work required by LACFD for redevelopment of the Site for residential purposes.

LIMITATIONS July 18, 2016

7.0 LIMITATIONS

The conclusions presented in this report are professional opinions based on data described in this report. The opinions of this report have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location, and are subject to the following inherent limitations. Stantec makes no other warranty, either expressed or implied, concerning the conclusions and professional advice that is contained within the body of this report.

Inherent in most projects performed in a heterogeneous subsurface environment, continuing excavation and assessments may reveal findings that are different than those presented herein. This facet of the environmental profession should be considered when formulating professional opinions on the limited data collected on these projects.

This report has been issued with the clear understanding that it is the responsibility of the owner, or their representative, to make appropriate notifications to regulatory agencies. It is specifically not the responsibility of Stantec to conduct appropriate notifications as specified by current County and State regulations.

The information presented in this report is valid as of the date our exploration was performed. Site conditions may degrade with time; consequently, the findings presented herein are subject to change.

REFERENCES July 18, 2016

8.0 REFERENCES

California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOG), 2016, website http://www.consrv.ca.gov/dog/maps

Department of Toxic Substances and Control, 2005, Fact Sheet #2: Gardena Sumps Site, Environmental Investigation Resumes, October.

_____, 2016, website http://www.envirostor.dtsc.ca.gov/public/

Odic Environmental, 2012, Phase I Environmental Site Assessment, June 26.

Odic Environmental, 2013, Update of Phase I Environmental Site Assessment, February 2.

SECOR, 2004, Phase I Environmental Site Assessment – Power Trans Freight Systems, May 12.

SECOR, 2004, Phase II Environmental Site Assessment – Power Trans Freight Systems, December 2.

Stantec, 2016, Phase I Environmental Site Assessment, April 27.

State Water Resource Control Board's Geotracker, 2016, website https://geotracker.waterboards.ca.gov/

United States Geological Survey (USGS), 1981, Torrance, 7.5 Minute Topographic Map, Scale 1 inch = 2,400 feet.

8.1

TABLES

Table 1 Summary of Soil Analytical Results 1515 West 178th Street, Gardena, CA

Stantec Project No.: 185803664

		VOCs (3)	VOCs ⁽³⁾							
Sample ID ⁽¹⁾	Sampling Date	Sampling					EPA Te	st Method 82	260B	
sample ib · ·	Sampling Date	Depth ⁽²⁾	TPHd	TPHo	Benzene	PCE	TCE	1,1-DCE	Methylene Choride	All Other VOCs
US	EPA RSLs (mg/kg) ⁽³⁾		96	2,500	1.2	24	0.94	780	580	varies
CA - DTSC HI	ERO Note 3 - Soil (mg	g/kg) ⁽⁴⁾	NE	NE	0.33	0.60	NE	210	NE	varies
SV-11-5	5/19/2016	5	NA	NA	< 0.0051	<0.0051	<0.0051	< 0.0051	<0.051	ND
SV-11-15	5/19/2016	15	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	<0.051	ND
SV-12-5	5/19/2016	5	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	< 0.051	ND
SV-12-15	5/19/2016	5	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	< 0.051	ND
SV-12-15 REP	5/19/2016	15	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	< 0.051	ND
SV-13-5	5/19/2016	5	<4.9	<25	< 0.0051	< 0.0051	<0.0051	< 0.0051	< 0.051	ND
SV-13-15	5/19/2016	15	<4.9	<25	< 0.0051	<0.0051	<0.0051	< 0.0051	<0.051	ND
SV-14-5	5/19/2016	5	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	<0.051	ND
SV-14-15	5/19/2016	15	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	<0.051	ND
SV-15-5	5/19/2016	5	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	< 0.051	ND
SV-15-15	5/19/2016	15	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	< 0.051	ND
SV-16-5	5/19/2016	5	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	<0.051	ND
SV-16-15	5/19/2016	15	NA	NA	< 0.0051	<0.0051	<0.0051	< 0.0051	<0.051	ND
SV-17-5	5/19/2016	5	NA	NA	< 0.0051	< 0.0051	<0.0051	< 0.0051	<0.051	ND
SV-17-15	5/19/2016	15	NA	NA	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.051	ND

NOTES:

- (1) Refer to Figure 2 for sampling locations
- (2) sampling depth is reported as feet below ground surface
- (3) Concentrations reported in milligrams per kilogram (mg/kg)
- (4) California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human

Health Risk Assessment (HHRA) Note No.3 - Soil Values in mg/kg - January 2016

< - Indicates the concentration was not detected above the laboratory reporting limit.

ABBREVIATIONS:

bgs - below ground surface

NA - Not Analyzed 1,1-DCE - 1,1-Dichloroethene

ND - Non Detect

NE - Not Established

PCE - Tetrachloroethene

TPHg - Total Petroleum Hydrocarbons as gasoline

TPHd - Total Petroleum Hydrocarbons as diesel

TPHo -Total Petroleum Hydrocarbons as oil

VOCs - Volatile Organic Compounds

USEPA RSLs - United States Environmental Protection Agency Regional Screening Levels for Residential Soils - November 2015

Table 2 Summary of Soil Vapor Analytical Results 1515 West 178th Street, Gardena, CA

Stantec Project No.: 185803664										
Sample ID	Purge Volume	Sampling Date	Sampling Depth ⁽¹⁾	PCE	TCE	VOCs (µg/L) ⁽² Benzene	1,1-DCE	Methylene	Other VOCs	
	r Residentic	al Land Use - S (L) ⁽³⁾		11	0.48	0.36	210	Chloride 100	varies	
CA - DTSC H		3 - Soil Vapor	· (µg/L) ⁽⁴⁾	0.48	NE	0.097	73	1.0	varies	
					Samples					
SV-1	3	4/8/2016	5	0.41	<0.08	<0.08	<0.40	<0.40	ND	
SV-2	3	4/8/2016	5	0.51	<0.08	<0.08	0.62	0.45	ND	
SV-3	3	4/8/2016	5	0.31	<0.08	<0.08	<0.40	<0.40	ND	
SV-3 REP	3	4/8/2016	5	0.26	<0.08	<0.08	<0.40	<0.40	ND	
SV-4	3	4/8/2016	5	0.24	<0.08	<0.08	<0.40	1.0	ND	
SV-5	3	4/8/2016	5	1.0	<0.08	0.09	<0.40	<0.40	ND	
SV-6	3	4/8/2016	5	0.99	0.11	0.10	<0.40	<0.40	ND	
SV-7	3	4/8/2016	5	46	0.10	0.10	<0.40	<0.40	ND	
SV-8	3	4/8/2016	5	<0.08	<0.08	0.09	<0.40	<0.40	ND	
SV-9	3	4/8/2016	5	<0.08	<0.08	0.10	<0.40	<0.40	ND	
SV-10	3	4/8/2016	5	0.11	<0.08	0.09	<0.40	<0.40	ND	
SV-11-5	3	5/19/2016	5	6.1	2.1	0.17	<0.40	<0.40	m,p-Xylene - 0.51	
SV-11-15	3	5/19/2016	15	7.4	2.8	<0.08	<0.40	<0.40	ND	
SV-12-5	3	5/19/2016	5	15	1.3	<0.08	<0.40	<0.40	ND	
SV-12-15	3	5/19/2016	5	31	2.4	<0.08	<0.40	<0.40	ND	
SV-12-15 REP	3	5/19/2016	15	23	2.0	<0.08	<0.40	<0.40	ND	
SV-13-5	3	5/19/2016	5	68	0.13	0.10	<0.40	<0.40	ND	
SV-13-15	3	5/19/2016	15			NS	- > 100" H2O			
SV-14-5	3	5/19/2016	5	21	0.28	0.14	<0.40	<0.40	ND	
SV-14-15	3	5/19/2016	15			NS	- > 100" H2O			
SV-15-5	3	5/19/2016	5	4.6	1.7	<0.08	<0.40	<0.40	ND	
SV-15-15	3	5/19/2016	15	7.1	3.1	0.09	<0.40	<0.40	ND	
SV-16-5	3	5/19/2016	5	14	0.64	<0.08	<0.40	<0.40	ND	
SV-16-15	3	5/19/2016	15	3.5	0.30	0.09	<0.40	<0.40	ND	
SV-17-5	3	5/19/2016	5	27	0.42	0.15	<0.40	<0.40	ND	
SV-17-15	3	5/19/2016	15	24	0.40	<0.08	<0.40	<0.40	ND	

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in µg/L and analyzed by GC/MS, EPA Method 8260B or TO-15
- (3) Environmental Protection Agency (EPA) Regional Screening Levels (RSL) for Reseidential Soil Vapor updated November 2015 (with an attenuation factor of 0.001)
- (4) California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note No.3 Residential Air Cancer Endpoint Values in μ g/L January
- ND< Indicates the concentration was not detected above the listed laboratory method reporting limit.

The analyte was reported above its RSL or HERO HHRA No. 3

ABBREVIATIONS:

NA - Not Analzyed

NE - Not Established VOCs - Volatile Organic Compounds

TABLE 3
Summary of Groundwater Results
1515 West 178th Street, Gardena, CA

Stantec Project No.: 185803664

Well ID	Date	TPHg	TPHd	ТРНо	PCE	TCE	1,1-DCA	1,1-DCE	1,2-DCA	1,1,2-TCA	Chloroform	All Other VOCs
US EP	A MCL	-		-	5.0	5.0		7.0	5.0	5.0		various
CALIFORNI	A MCL/NL				5.0	5.0	5.0	6.0	0.5	5.0	1.0	various
HP-1	06/27/16	<100	53	<250	70	16	<1.0	<1.0	<0.50	<1.0	<1.0	ND
HP-2	06/27/16	<100	65	<250	3.7	1.5	<1.0	<1.0	<0.50	<1.0	<1.0	ND
HP-3	06/27/16	<100	310	1,100	5.8	12	16	100	1.7	1.7	1.8	ND

Notes:

All results reported in micrograms per liter (ug/L)

USEPA = United States Environmental Protection Agency

MCL = Maximum Contaminant Levels updated January 2015.

< = Concentration less than the indicated laboratory reporting limit.

The analyte was reported above its MCL

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

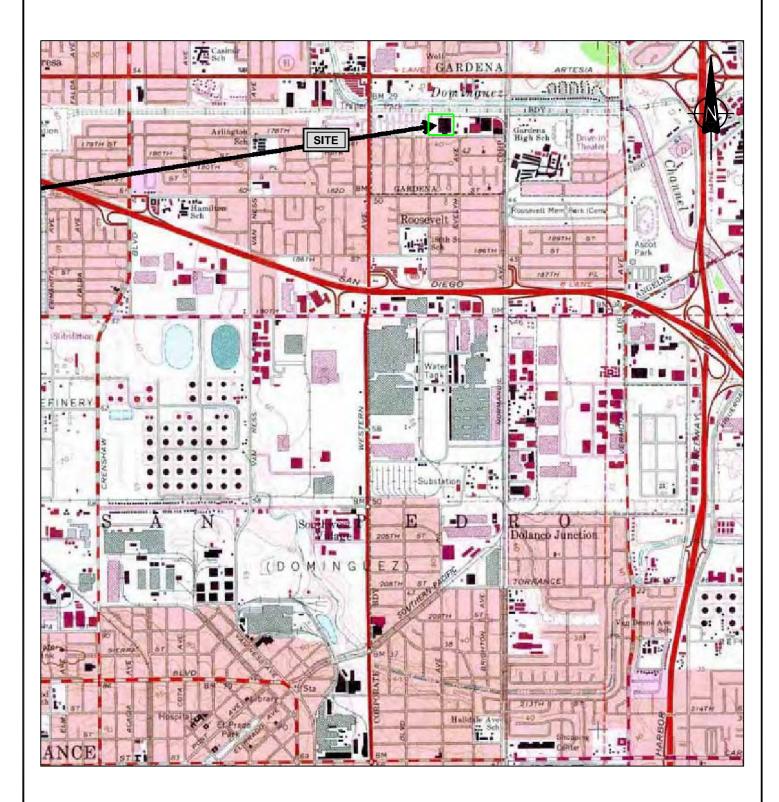
TPHo =Total Petroleum Hydrocarbons as oil

PCE = Tetrachloroethene

TCE = Trichloroethene

1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene

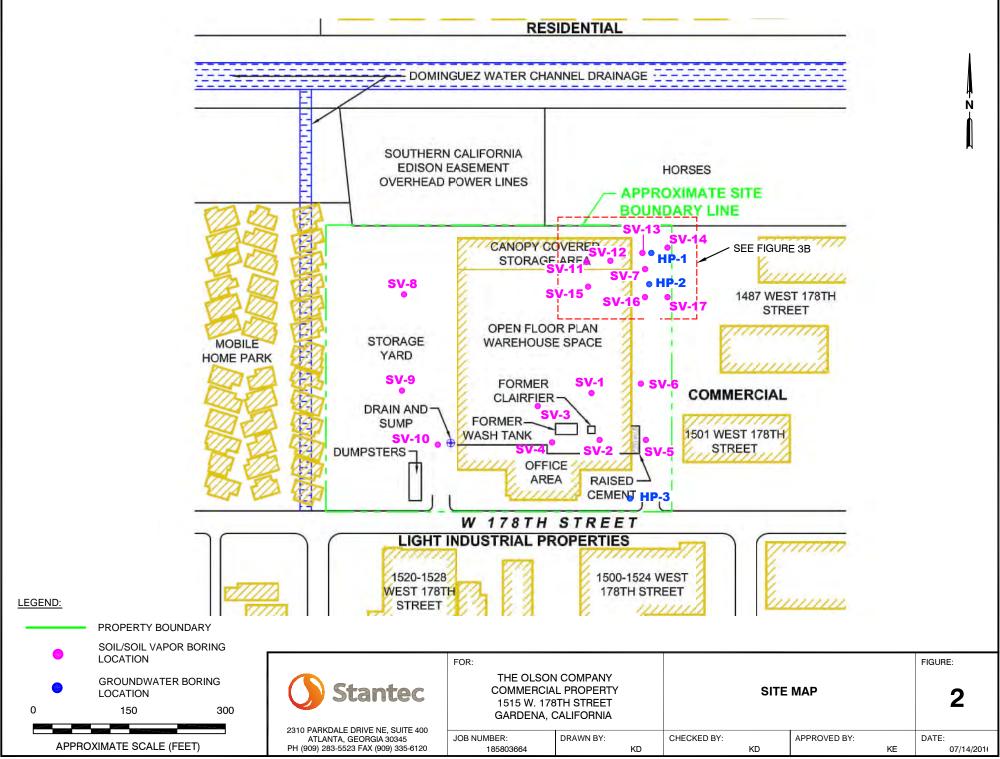

1,2-DCE = 1,1-Dichloroethane

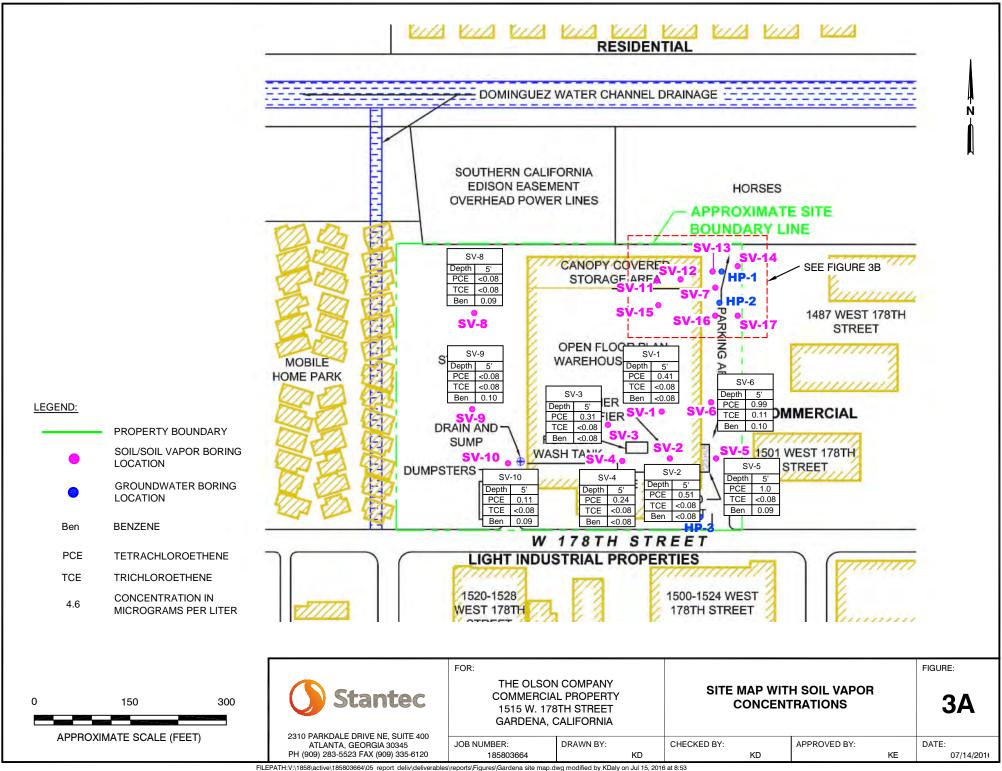
1,1,2-TCA = 1,1,-Trichloroethane

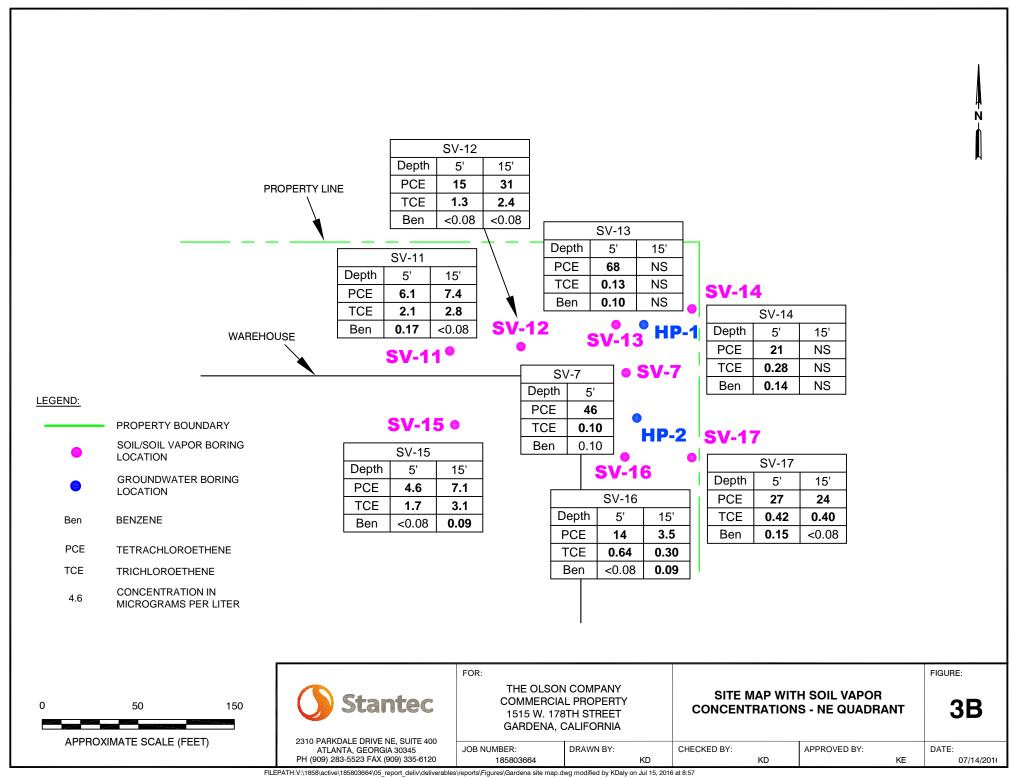
TPH = Total petroleum hydrocarbons

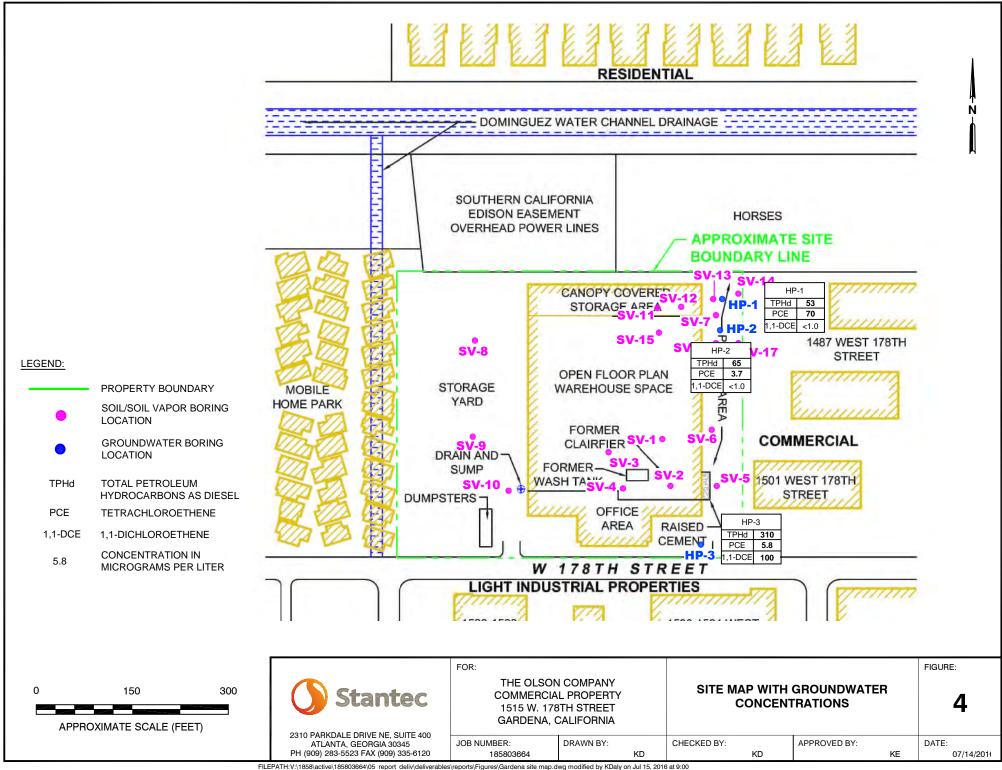
VOCs = Volatile organic compounds

FIGURES


0 2500 5000 7500 ft
SCALE : AS SHOWN


NOTE: THIS DRAWING ILLUSTRATES SUPPORTING INFORMATION SPECIFIC TO A STANTEC SERVICES INC. REPORT AND MUST NOT BE USED FOR OTHER PURPOSES.


	3 11 TOT TIE TOT TO THE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DDODEDTY I OCATION MAD	Project No.:	185803664	Fig. No.:
PROPERTY LOCATION MAP	Scale:	AS SHOWN	_
PHASE I ESA	Date:	te: 16/03/24	
1515 W. 178TH STREET, GARDENA, CA	Dwn. By:	CD _{VM} SC2016030068	
THE OLSON COMPANY	App'd By:	KE	



Client:

APPENDIX A LABORATORY DATA SHEETS AND QA/QC RESULTS

Calscience

WORK ORDER NUMBER: 16-05-1326

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Stantec

Client Project Name: 185803664

Attention: Jim DeWoody

25864-F Business Center Drive Redlands, CA 92374-4515

Hathken M. burney Fox

Approved for release on 05/25/2016 by:

Carla Hollowell Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	185803664
Work Order Number:	16-05-1326

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data	5
4	Quality Control Sample Data.4.1 MS/MSD.4.2 LCS/LCSD.	53 53 55
5	Glossary of Terms and Qualifiers	57
6	Chain-of-Custody/Sample Receipt Form	58

Work Order Narrative

Work Order: 16-05-1326 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 05/18/16. They were assigned to Work Order 16-05-1326.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

 Client:
 Stantec
 Work Order:
 16-05-1326

 25864-F Business Center Drive
 Project Name:
 185803664

Redlands, CA 92374-4515 PO Number:

Date/Time 05/18/16 15:40 Received:

Number of 14 Containers:

Attn: Jim DeWoody

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SV-11-5	16-05-1326-1	05/17/16 09:13	1	Solid
SV-11-15	16-05-1326-2	05/17/16 09:27	1	Solid
SV-12-5	16-05-1326-3	05/17/16 09:55	1	Solid
SV-12-15	16-05-1326-4	05/17/16 10:09	1	Solid
SV-13-5	16-05-1326-5	05/17/16 10:33	1	Solid
SV-13-15	16-05-1326-6	05/17/16 10:47	1	Solid
SV-17-5	16-05-1326-7	05/17/16 12:00	1	Solid
SV-17-15	16-05-1326-8	05/17/16 12:10	1	Solid
SV-14-5	16-05-1326-9	05/17/16 12:38	1	Solid
SV-14-15	16-05-1326-10	05/17/16 12:50	1	Solid
SV-16-5	16-05-1326-11	05/17/16 13:07	1	Solid
SV-16-15	16-05-1326-12	05/17/16 13:20	1	Solid
SV-15-5	16-05-1326-13	05/17/16 13:55	1	Solid
SV-15-15	16-05-1326-14	05/17/16 14:25	1	Solid

Analytical Report

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 1 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-11-5	16-05-1326-1-A	05/17/16 09:13	Solid	GC/MS GGG	05/18/16	05/19/16 06:10	160518L054
<u>Parameter</u>	•	Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	130	0	1.00		
Benzene		ND	5.1		1.00		
Bromobenzene		ND	5.1		1.00		
Bromochloromethane		ND	5.1		1.00		
Bromodichloromethane		ND	5.1		1.00		
Bromoform		ND	5.1		1.00		
Bromomethane		ND	25		1.00		
2-Butanone		ND	51		1.00		
n-Butylbenzene		ND	5.1		1.00		
sec-Butylbenzene		ND	5.1		1.00		
tert-Butylbenzene		ND	5.1		1.00		
Carbon Disulfide		ND	51		1.00		
Carbon Tetrachloride		ND	5.1		1.00		
Chlorobenzene		ND	5.1		1.00		
Chloroethane		ND	5.1		1.00		
Chloroform		ND	5.1		1.00		
Chloromethane		ND	25		1.00		
2-Chlorotoluene		ND	5.1		1.00		
4-Chlorotoluene		ND	5.1		1.00		
Dibromochloromethane		ND	5.1		1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.1		1.00		
Dibromomethane		ND	5.1		1.00		
1,2-Dichlorobenzene		ND	5.1		1.00		
1,3-Dichlorobenzene		ND	5.1		1.00		
1,4-Dichlorobenzene		ND	5.1		1.00		
Dichlorodifluoromethane		ND	5.1		1.00		
1,1-Dichloroethane		ND	5.1		1.00		
1,2-Dichloroethane		ND	5.1		1.00		
1,1-Dichloroethene		ND	5.1		1.00		
c-1,2-Dichloroethene		ND	5.1		1.00		
t-1,2-Dichloroethene		ND	5.1		1.00		
1,2-Dichloropropane		ND	5.1		1.00		
1,3-Dichloropropane		ND	5.1		1.00		
2,2-Dichloropropane		ND	5.1		1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 2 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 5.1 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 5.1 1.00 t-1,3-Dichloropropene ND 5.1 1.00 Ethylbenzene ND 5.1 1.00 2-Hexanone ND 51 1.00 Isopropylbenzene ND 5.1 1.00 p-Isopropyltoluene ND 5.1 1.00 Methylene Chloride ND 51 1.00 4-Methyl-2-Pentanone ND 51 1.00 Naphthalene ND 51 1.00 ND n-Propylbenzene 5.1 1.00 Styrene ND 5.1 1.00 1,1,1,2-Tetrachloroethane ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 Tetrachloroethene ND 5.1 1.00 Toluene ND 5.1 1.00 1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichlorobenzene ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tert-Amyl-Methyl Ether (TAME)

1,4-Bromofluorobenzene

Ethanol

Surrogate

10

250

60-132

Control Limits

1.00

1.00

Qualifiers

ND

ND

97

Rec. (%)

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 3 of 48

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	100	63-141	
1,2-Dichloroethane-d4	99	62-146	
Toluene-d8	101	80-120	

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 4 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-11-15	16-05-1326-2-A	05/17/16 09:27	Solid	GC/MS GGG	05/18/16	05/18/16 23:32	160518L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	120)	1.00		
Benzene		ND	5.0		1.00		
Bromobenzene		ND	5.0		1.00		
Bromochloromethane		ND	5.0		1.00		
Bromodichloromethane		ND	5.0		1.00		
Bromoform		ND	5.0		1.00		
Bromomethane		ND	25		1.00		
2-Butanone		ND	50		1.00		
n-Butylbenzene		ND	5.0		1.00		
sec-Butylbenzene		ND	5.0		1.00		
tert-Butylbenzene		ND	5.0		1.00		
Carbon Disulfide		ND	50		1.00		
Carbon Tetrachloride		ND	5.0		1.00		
Chlorobenzene		ND	5.0		1.00		
Chloroethane		ND	5.0		1.00		
Chloroform		ND	5.0		1.00		
Chloromethane		ND	25		1.00		
2-Chlorotoluene		ND	5.0		1.00		
4-Chlorotoluene		ND	5.0		1.00		
Dibromochloromethane		ND	5.0		1.00		
1,2-Dibromo-3-Chloropropane		ND	9.9		1.00		
1,2-Dibromoethane		ND	5.0		1.00		
Dibromomethane		ND	5.0		1.00		
1,2-Dichlorobenzene		ND	5.0		1.00		
1,3-Dichlorobenzene		ND	5.0		1.00		
1,4-Dichlorobenzene		ND	5.0		1.00		
Dichlorodifluoromethane		ND	5.0		1.00		
1,1-Dichloroethane		ND	5.0		1.00		
1,2-Dichloroethane		ND	5.0		1.00		
1,1-Dichloroethene		ND	5.0		1.00		
c-1,2-Dichloroethene		ND	5.0		1.00		
t-1,2-Dichloroethene		ND	5.0		1.00		
1,2-Dichloropropane		ND	5.0		1.00		
1,3-Dichloropropane		ND	5.0		1.00		
2,2-Dichloropropane		ND	5.0		1.00		

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 5 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 5.0 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 5.0 1.00 t-1,3-Dichloropropene ND 5.0 1.00 Ethylbenzene ND 5.0 1.00 2-Hexanone ND 50 1.00 Isopropylbenzene ND 5.0 1.00 p-Isopropyltoluene ND 5.0 1.00 Methylene Chloride ND 50 1.00 4-Methyl-2-Pentanone ND 50 1.00 Naphthalene ND 50 1.00 ND n-Propylbenzene 5.0 1.00 Styrene ND 5.0 1.00 1,1,1,2-Tetrachloroethane ND 5.0 1.00 1,1,2,2-Tetrachloroethane ND 5.0 1.00 Tetrachloroethene ND 5.0 1.00 Toluene ND 5.0 1.00 1,2,3-Trichlorobenzene ND 9.9 1.00 1,2,4-Trichlorobenzene ND 5.0 1.00 1,1,1-Trichloroethane ND 5.0 1.00 1,1,2-Trichloroethane ND 5.0 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 50 1.00 Trichloroethene ND 5.0 1.00 ND 1,2,3-Trichloropropane 5.0 1.00 1,2,4-Trimethylbenzene ND 5.0 1.00 Trichlorofluoromethane ND 50 1.00 1,3,5-Trimethylbenzene ND 5.0 1.00 Vinyl Acetate ND 50 1.00 Vinyl Chloride ND 5.0 1.00 p/m-Xylene ND 5.0 1.00 o-Xylene ND 5.0 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.0 1.00 Tert-Butyl Alcohol (TBA) ND 50 1.00 Diisopropyl Ether (DIPE) ND 9.9 1.00 Ethyl-t-Butyl Ether (ETBE) ND 9.9 1.00 Tert-Amyl-Methyl Ether (TAME) ND 9.9 1.00 Ethanol ND 250 1.00 Surrogate Rec. (%) **Control Limits** Qualifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

1,4-Bromofluorobenzene

60-132

101

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 6 of 48

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	100	63-141	
1,2-Dichloroethane-d4	105	62-146	
Toluene-d8	102	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 7 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-12-5	16-05-1326-3-A	05/17/16 09:55	Solid	GC/MS GGG	05/18/16	05/18/16 23:58	160518L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	130	0	1.00		
Benzene		ND	5.1		1.00		
Bromobenzene		ND	5.1		1.00		
Bromochloromethane		ND	5.1		1.00		
Bromodichloromethane		ND	5.1		1.00		
Bromoform		ND	5.1		1.00		
Bromomethane		ND	26		1.00		
2-Butanone		ND	51		1.00		
n-Butylbenzene		ND	5.1		1.00		
sec-Butylbenzene		ND	5.1		1.00		
tert-Butylbenzene		ND	5.1		1.00		
Carbon Disulfide		ND	51		1.00		
Carbon Tetrachloride		ND	5.1		1.00		
Chlorobenzene		ND	5.1		1.00		
Chloroethane		ND	5.1		1.00		
Chloroform		ND	5.1		1.00		
Chloromethane		ND	26		1.00		
2-Chlorotoluene		ND	5.1		1.00		
4-Chlorotoluene		ND	5.1		1.00		
Dibromochloromethane		ND	5.1		1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.1		1.00		
Dibromomethane		ND	5.1		1.00		
1,2-Dichlorobenzene		ND	5.1		1.00		
1,3-Dichlorobenzene		ND	5.1		1.00		
1,4-Dichlorobenzene		ND	5.1		1.00		
Dichlorodifluoromethane		ND	5.1		1.00		
1,1-Dichloroethane		ND	5.1		1.00		
1,2-Dichloroethane		ND	5.1		1.00		
1,1-Dichloroethene		ND	5.1		1.00		
c-1,2-Dichloroethene		ND	5.1		1.00		
t-1,2-Dichloroethene		ND	5.1		1.00		
1,2-Dichloropropane		ND	5.1		1.00		
1,3-Dichloropropane		ND	5.1		1.00		
2,2-Dichloropropane		ND	5.1		1.00		

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethanol

Surrogate

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Tert-Amyl-Methyl Ether (TAME)

Analytical Report

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 8 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 5.1 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 5.1 1.00 t-1,3-Dichloropropene ND 5.1 1.00 Ethylbenzene ND 5.1 1.00 2-Hexanone ND 51 1.00 Isopropylbenzene ND 5.1 1.00 p-Isopropyltoluene ND 5.1 1.00 Methylene Chloride ND 51 1.00 4-Methyl-2-Pentanone ND 51 1.00 Naphthalene ND 51 1.00 ND n-Propylbenzene 5.1 1.00 Styrene ND 5.1 1.00 1,1,1,2-Tetrachloroethane ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 Tetrachloroethene ND 5.1 1.00 Toluene ND 5.1 1.00 1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichlorobenzene ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

51

10

10

10

260

60-132

Control Limits

1.00

1.00

1.00

1.00

1.00

Qualifiers

ND

ND

ND

ND

ND

98

Rec. (%)

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 9 of 48

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	101	63-141	
1,2-Dichloroethane-d4	103	62-146	
Toluene-d8	102	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 10 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-12-15	16-05-1326-4-A	05/17/16 10:09	Solid	GC/MS GGG	05/18/16	05/19/16 00:24	160518L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	120)	1.00		
Benzene		ND	4.8		1.00		
Bromobenzene		ND	4.8		1.00		
Bromochloromethane		ND	4.8		1.00		
Bromodichloromethane		ND	4.8		1.00		
Bromoform		ND	4.8		1.00		
Bromomethane		ND	24		1.00		
2-Butanone		ND	48		1.00		
n-Butylbenzene		ND	4.8		1.00		
sec-Butylbenzene		ND	4.8		1.00		
tert-Butylbenzene		ND	4.8		1.00		
Carbon Disulfide		ND	48		1.00		
Carbon Tetrachloride		ND	4.8		1.00		
Chlorobenzene		ND	4.8		1.00		
Chloroethane		ND	4.8		1.00		
Chloroform		ND	4.8		1.00		
Chloromethane		ND	24		1.00		
2-Chlorotoluene		ND	4.8		1.00		
4-Chlorotoluene		ND	4.8		1.00		
Dibromochloromethane		ND	4.8		1.00		
1,2-Dibromo-3-Chloropropane		ND	9.6		1.00		
1,2-Dibromoethane		ND	4.8		1.00		
Dibromomethane		ND	4.8		1.00		
1,2-Dichlorobenzene		ND	4.8		1.00		
1,3-Dichlorobenzene		ND	4.8		1.00		
1,4-Dichlorobenzene		ND	4.8		1.00		
Dichlorodifluoromethane		ND	4.8		1.00		
1,1-Dichloroethane		ND	4.8		1.00		
1,2-Dichloroethane		ND	4.8		1.00		
1,1-Dichloroethene		ND	4.8		1.00		
c-1,2-Dichloroethene		ND	4.8		1.00		
t-1,2-Dichloroethene		ND	4.8		1.00		
1,2-Dichloropropane		ND	4.8		1.00		
1,3-Dichloropropane		ND	4.8		1.00		
2,2-Dichloropropane		ND	4.8		1.00		

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 185803664
 Page 11 of 48

				1 490 11 01 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	4.8	1.00	
c-1,3-Dichloropropene	ND	4.8	1.00	
t-1,3-Dichloropropene	ND	4.8	1.00	
Ethylbenzene	ND	4.8	1.00	
2-Hexanone	ND	48	1.00	
Isopropylbenzene	ND	4.8	1.00	
p-Isopropyltoluene	ND	4.8	1.00	
Methylene Chloride	ND	48	1.00	
4-Methyl-2-Pentanone	ND	48	1.00	
Naphthalene	ND	48	1.00	
n-Propylbenzene	ND	4.8	1.00	
Styrene	ND	4.8	1.00	
1,1,1,2-Tetrachloroethane	ND	4.8	1.00	
1,1,2,2-Tetrachloroethane	ND	4.8	1.00	
Tetrachloroethene	ND	4.8	1.00	
Toluene	ND	4.8	1.00	
1,2,3-Trichlorobenzene	ND	9.6	1.00	
1,2,4-Trichlorobenzene	ND	4.8	1.00	
1,1,1-Trichloroethane	ND	4.8	1.00	
1,1,2-Trichloroethane	ND	4.8	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	48	1.00	
Trichloroethene	ND	4.8	1.00	
1,2,3-Trichloropropane	ND	4.8	1.00	
1,2,4-Trimethylbenzene	ND	4.8	1.00	
Trichlorofluoromethane	ND	48	1.00	
1,3,5-Trimethylbenzene	ND	4.8	1.00	
Vinyl Acetate	ND	48	1.00	
Vinyl Chloride	ND	4.8	1.00	
p/m-Xylene	ND	4.8	1.00	
o-Xylene	ND	4.8	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	4.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	48	1.00	
Diisopropyl Ether (DIPE)	ND	9.6	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	9.6	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	9.6	1.00	
Ethanol	ND	240	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	60-132		

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 12 of 48

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	102	63-141	
1,2-Dichloroethane-d4	103	62-146	
Toluene-d8	101	80-120	

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 13 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-13-5	16-05-1326-5-A	05/17/16 10:33	Solid	GC/MS GGG	05/18/16	05/19/16 00:51	160518L025
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Acetone		ND	13	0	1.00		
Benzene		ND	5.1		1.00		
Bromobenzene		ND	5.1		1.00		
Bromochloromethane		ND	5.1		1.00		
Bromodichloromethane		ND	5.1		1.00		
Bromoform		ND	5.1		1.00		
Bromomethane		ND	26		1.00		
2-Butanone		ND	51		1.00		
n-Butylbenzene		ND	5.1		1.00		
sec-Butylbenzene		ND	5.1		1.00		
tert-Butylbenzene		ND	5.1		1.00		
Carbon Disulfide		ND	51		1.00		
Carbon Tetrachloride		ND	5.1		1.00		
Chlorobenzene		ND	5.1		1.00		
Chloroethane		ND	5.1		1.00		
Chloroform		ND	5.1		1.00		
Chloromethane		ND	26		1.00		
2-Chlorotoluene		ND	5.1		1.00		
4-Chlorotoluene		ND	5.1		1.00		
Dibromochloromethane		ND	5.1		1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.1		1.00		
Dibromomethane		ND	5.1		1.00		
1,2-Dichlorobenzene		ND	5.1		1.00		
1,3-Dichlorobenzene		ND	5.1		1.00		
1,4-Dichlorobenzene		ND	5.1		1.00		
Dichlorodifluoromethane		ND	5.1		1.00		
1,1-Dichloroethane		ND	5.1		1.00		
1,2-Dichloroethane		ND	5.1		1.00		
1,1-Dichloroethene		ND	5.1		1.00		
c-1,2-Dichloroethene		ND	5.1		1.00		
t-1,2-Dichloroethene		ND	5.1		1.00		
1,2-Dichloropropane		ND	5.1		1.00		
1,3-Dichloropropane		ND	5.1		1.00		
2,2-Dichloropropane		ND	5.1		1.00		

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 185803664
 Page 14 of 48

110,000.10000004				1 agc 14 01 40
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	5.1	1.00	
c-1,3-Dichloropropene	ND	5.1	1.00	
t-1,3-Dichloropropene	ND	5.1	1.00	
Ethylbenzene	ND	5.1	1.00	
2-Hexanone	ND	51	1.00	
Isopropylbenzene	ND	5.1	1.00	
p-Isopropyltoluene	ND	5.1	1.00	
Methylene Chloride	ND	51	1.00	
4-Methyl-2-Pentanone	ND	51	1.00	
Naphthalene	ND	51	1.00	
n-Propylbenzene	ND	5.1	1.00	
Styrene	ND	5.1	1.00	
1,1,1,2-Tetrachloroethane	ND	5.1	1.00	
1,1,2,2-Tetrachloroethane	ND	5.1	1.00	
Tetrachloroethene	ND	5.1	1.00	
Toluene	ND	5.1	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.1	1.00	
1,1,1-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	51	1.00	
Trichloroethene	ND	5.1	1.00	
1,2,3-Trichloropropane	ND	5.1	1.00	
1,2,4-Trimethylbenzene	ND	5.1	1.00	
Trichlorofluoromethane	ND	51	1.00	
1,3,5-Trimethylbenzene	ND	5.1	1.00	
Vinyl Acetate	ND	51	1.00	
Vinyl Chloride	ND	5.1	1.00	
p/m-Xylene	ND	5.1	1.00	
o-Xylene	ND	5.1	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.1	1.00	
Tert-Butyl Alcohol (TBA)	ND	51	1.00	
Diisopropyl Ether (DIPE)	ND	10	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00	
Ethanol	ND	260	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	97	60-132		

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 15 of 48

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	101	63-141	
1,2-Dichloroethane-d4	102	62-146	
Toluene-d8	101	80-120	

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 16 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-13-15	16-05-1326-6-A	05/17/16 10:47	Solid	GC/MS GGG	05/18/16	05/19/16 01:18	160518L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	130	0	1.00		
Benzene		ND	5.1		1.00		
Bromobenzene		ND	5.1		1.00		
Bromochloromethane		ND	5.1		1.00		
Bromodichloromethane		ND	5.1		1.00		
Bromoform		ND	5.1		1.00		
Bromomethane		ND	26		1.00		
2-Butanone		ND	51		1.00		
n-Butylbenzene		ND	5.1		1.00		
sec-Butylbenzene		ND	5.1		1.00		
tert-Butylbenzene		ND	5.1		1.00		
Carbon Disulfide		ND	51		1.00		
Carbon Tetrachloride		ND	5.1		1.00		
Chlorobenzene		ND	5.1		1.00		
Chloroethane		ND	5.1		1.00		
Chloroform		ND	5.1		1.00		
Chloromethane		ND	26		1.00		
2-Chlorotoluene		ND	5.1		1.00		
4-Chlorotoluene		ND	5.1		1.00		
Dibromochloromethane		ND	5.1		1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.1		1.00		
Dibromomethane		ND	5.1		1.00		
1,2-Dichlorobenzene		ND	5.1		1.00		
1,3-Dichlorobenzene		ND	5.1		1.00		
1,4-Dichlorobenzene		ND	5.1		1.00		
Dichlorodifluoromethane		ND	5.1		1.00		
1,1-Dichloroethane		ND	5.1		1.00		
1,2-Dichloroethane		ND	5.1		1.00		
1,1-Dichloroethene		ND	5.1		1.00		
c-1,2-Dichloroethene		ND	5.1		1.00		
t-1,2-Dichloroethene		ND	5.1		1.00		
1,2-Dichloropropane		ND	5.1		1.00		
1,3-Dichloropropane		ND	5.1		1.00		
2,2-Dichloropropane		ND	5.1		1.00		

o-Xylene

Ethanol

Surrogate

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Tert-Amyl-Methyl Ether (TAME)

Analytical Report

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 17 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 5.1 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 5.1 1.00 t-1,3-Dichloropropene ND 5.1 1.00 Ethylbenzene ND 5.1 1.00 2-Hexanone ND 51 1.00 Isopropylbenzene ND 5.1 1.00 p-Isopropyltoluene ND 5.1 1.00 Methylene Chloride ND 51 1.00 4-Methyl-2-Pentanone ND 51 1.00 Naphthalene ND 51 1.00 ND n-Propylbenzene 5.1 1.00 Styrene ND 5.1 1.00 1,1,1,2-Tetrachloroethane ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 Tetrachloroethene ND 5.1 1.00 Toluene ND 5.1 1.00 1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichlorobenzene ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

ND

ND

ND

ND

ND

ND

ND

98

Rec. (%)

5.1

5.1

51

10

10

10

260

60-132

Control Limits

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 18 of 48

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	100	63-141	
1,2-Dichloroethane-d4	100	62-146	
Toluene-d8	101	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 19 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-17-5	16-05-1326-7-A	05/17/16 12:00	Solid	GC/MS GGG	05/18/16	05/19/16 01:44	160518L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	12	0	1.00		
Benzene		ND	4.8	1	1.00		
Bromobenzene		ND	4.8	}	1.00		
Bromochloromethane		ND	4.8	1	1.00		
Bromodichloromethane		ND	4.8	1	1.00		
Bromoform		ND	4.8	1	1.00		
Bromomethane		ND	24		1.00		
2-Butanone		ND	48		1.00		
n-Butylbenzene		ND	4.8	;	1.00		
sec-Butylbenzene		ND	4.8	;	1.00		
tert-Butylbenzene		ND	4.8	;	1.00		
Carbon Disulfide		ND	48		1.00		
Carbon Tetrachloride		ND	4.8	;	1.00		
Chlorobenzene		ND	4.8	;	1.00		
Chloroethane		ND	4.8	;	1.00		
Chloroform		ND	4.8	;	1.00		
Chloromethane		ND	24		1.00		
2-Chlorotoluene		ND	4.8	;	1.00		
4-Chlorotoluene		ND	4.8	;	1.00		
Dibromochloromethane		ND	4.8	;	1.00		
1,2-Dibromo-3-Chloropropane		ND	9.6	;	1.00		
1,2-Dibromoethane		ND	4.8	;	1.00		
Dibromomethane		ND	4.8	;	1.00		
1,2-Dichlorobenzene		ND	4.8	1	1.00		
1,3-Dichlorobenzene		ND	4.8	;	1.00		
1,4-Dichlorobenzene		ND	4.8	1	1.00		
Dichlorodifluoromethane		ND	4.8	1	1.00		
1,1-Dichloroethane		ND	4.8		1.00		
1,2-Dichloroethane		ND	4.8	1	1.00		
1,1-Dichloroethene		ND	4.8		1.00		
c-1,2-Dichloroethene		ND	4.8	;	1.00		
t-1,2-Dichloroethene		ND	4.8		1.00		
1,2-Dichloropropane		ND	4.8		1.00		
1,3-Dichloropropane		ND	4.8		1.00		
2,2-Dichloropropane		ND	4.8	;	1.00		

o-Xylene

Ethanol

Surrogate

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Tert-Amyl-Methyl Ether (TAME)

Analytical Report

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 20 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 1.00 1,1-Dichloropropene 4.8 c-1,3-Dichloropropene ND 4.8 1.00 t-1,3-Dichloropropene ND 4.8 1.00 Ethylbenzene ND 4.8 1.00 2-Hexanone ND 48 1.00 Isopropylbenzene ND 4.8 1.00 p-Isopropyltoluene ND 4.8 1.00 Methylene Chloride ND 48 1.00 4-Methyl-2-Pentanone ND 48 1.00 Naphthalene ND 48 1.00 ND n-Propylbenzene 4.8 1.00 Styrene ND 4.8 1.00 1,1,1,2-Tetrachloroethane ND 4.8 1.00 1,1,2,2-Tetrachloroethane ND 4.8 1.00 Tetrachloroethene ND 4.8 1.00 Toluene ND 4.8 1.00 1,2,3-Trichlorobenzene ND 9.6 1.00 1,2,4-Trichlorobenzene ND 4.8 1.00 1,1,1-Trichloroethane ND 4.8 1.00 1,1,2-Trichloroethane ND 4.8 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 48 1.00 Trichloroethene ND 4.8 1.00 ND 1,2,3-Trichloropropane 4.8 1.00 1,2,4-Trimethylbenzene ND 1.00 4.8 Trichlorofluoromethane ND 48 1.00 1,3,5-Trimethylbenzene ND 4.8 1.00 Vinyl Acetate ND 48 1.00 Vinyl Chloride ND 4.8 1.00 p/m-Xylene ND 4.8 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

ND

ND

ND

ND

ND

ND

ND

98

Rec. (%)

4.8

4.8

48

9.6

9.6

9.6

240

60-132

Control Limits

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 21 of 48

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	101	63-141	
1,2-Dichloroethane-d4	101	62-146	
Toluene-d8	101	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 22 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-17-15	16-05-1326-8-A	05/17/16 12:10	Solid	GC/MS GGG	05/18/16	05/19/16 02:11	160518L025
<u>Parameter</u>		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	12	20	1.00		
Benzene		ND	4.	9	1.00		
Bromobenzene		ND	4.	9	1.00		
Bromochloromethane		ND	4.	9	1.00		
Bromodichloromethane		ND	4.	9	1.00		
Bromoform		ND	4.	9	1.00		
Bromomethane		ND	24	1	1.00		
2-Butanone		ND	49)	1.00		
n-Butylbenzene		ND	4.	9	1.00		
sec-Butylbenzene		ND	4.	9	1.00		
tert-Butylbenzene		ND	4.	9	1.00		
Carbon Disulfide		ND	49)	1.00		
Carbon Tetrachloride		ND	4.	9	1.00		
Chlorobenzene		ND	4.	9	1.00		
Chloroethane		ND	4.	9	1.00		
Chloroform		ND	4.	9	1.00		
Chloromethane		ND	24	1	1.00		
2-Chlorotoluene		ND	4.	9	1.00		
4-Chlorotoluene		ND	4.	9	1.00		
Dibromochloromethane		ND	4.	9	1.00		
1,2-Dibromo-3-Chloropropane		ND	9.	7	1.00		
1,2-Dibromoethane		ND	4.	9	1.00		
Dibromomethane		ND	4.	9	1.00		
1,2-Dichlorobenzene		ND	4.	9	1.00		
1,3-Dichlorobenzene		ND	4.		1.00		
1,4-Dichlorobenzene		ND	4.		1.00		
Dichlorodifluoromethane		ND	4.		1.00		
1,1-Dichloroethane		ND	4.		1.00		
1,2-Dichloroethane		ND	4.		1.00		
1,1-Dichloroethene		ND	4.		1.00		
c-1,2-Dichloroethene		ND	4.		1.00		
t-1,2-Dichloroethene		ND	4.		1.00		
1,2-Dichloropropane		ND	4.		1.00		
1,3-Dichloropropane		ND	4.		1.00		
2,2-Dichloropropane		ND	4.		1.00		

Stantec	Da	ite Received:		05/18/16		
25864-F Business Center Drive	Wo	ork Order:	16-05-1326			
Redlands, CA 92374-4515		Preparation:				
1.00mm, 07.02074 4010		Method:				
		nits:		EPA 8260B ug/kg		
Project: 185803664	OI.	111.5.		Page 23 of 48		
F10Ject. 163803004						
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers		
1,1-Dichloropropene	ND	4.9	1.00			
c-1,3-Dichloropropene	ND	4.9	1.00			
t-1,3-Dichloropropene	ND	4.9	1.00			
Ethylbenzene	ND	4.9	1.00			
2-Hexanone	ND	49	1.00			
Isopropylbenzene	ND	4.9	1.00			
p-Isopropyltoluene	ND	4.9	1.00			
Methylene Chloride	ND	49	1.00			
4-Methyl-2-Pentanone	ND	49	1.00			
Naphthalene	ND	49	1.00			
n-Propylbenzene	ND	4.9	1.00			
Styrene	ND	4.9	1.00			
1,1,1,2-Tetrachloroethane	ND	4.9	1.00			
1,1,2,2-Tetrachloroethane	ND	4.9	1.00			
Tetrachloroethene	ND	4.9	1.00			
Toluene	ND	4.9	1.00			
1,2,3-Trichlorobenzene	ND	9.7	1.00			
1,2,4-Trichlorobenzene	ND	4.9	1.00			
1,1,1-Trichloroethane	ND	4.9	1.00			
1,1,2-Trichloroethane	ND	4.9	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	49	1.00			
Trichloroethene	ND	4.9	1.00			
1,2,3-Trichloropropane	ND	4.9	1.00			
1,2,4-Trimethylbenzene	ND	4.9	1.00			
Trichlorofluoromethane	ND	49	1.00			
1,3,5-Trimethylbenzene	ND	4.9	1.00			
Vinyl Acetate	ND	49	1.00			
Vinyl Chloride	ND	4.9	1.00			
p/m-Xylene	ND	4.9	1.00			
o-Xylene	ND	4.9	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	4.9	1.00			
Tert-Butyl Alcohol (TBA)	ND	49	1.00			
Diisopropyl Ether (DIPE)	ND	9.7	1.00			
Ethyl-t-Butyl Ether (ETBE)	ND	9.7	1.00			
Tert-Amyl-Methyl Ether (TAME)	ND	9.7	1.00			
Ethanol	ND	240	1.00			
		-				
Surrogate	Rec. (%)	Control Limits	Qualifiers			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

1,4-Bromofluorobenzene

60-132

98

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 24 of 48

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	102	63-141	
1,2-Dichloroethane-d4	102	62-146	
Toluene-d8	100	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 25 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-14-5	16-05-1326-9-A	05/17/16 12:38	Solid	GC/MS GGG	05/18/16	05/19/16 02:37	160518L025
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	12	0	1.00		
Benzene		ND	4.9)	1.00		
Bromobenzene		ND	4.9)	1.00		
Bromochloromethane		ND	4.9)	1.00		
Bromodichloromethane		ND	4.9)	1.00		
Bromoform		ND	4.9)	1.00		
Bromomethane		ND	24		1.00		
2-Butanone		ND	49		1.00		
n-Butylbenzene		ND	4.9)	1.00		
sec-Butylbenzene		ND	4.9)	1.00		
tert-Butylbenzene		ND	4.9)	1.00		
Carbon Disulfide		ND	49		1.00		
Carbon Tetrachloride		ND	4.9)	1.00		
Chlorobenzene		ND	4.9)	1.00		
Chloroethane		ND	4.9)	1.00		
Chloroform		ND	4.9)	1.00		
Chloromethane		ND	24		1.00		
2-Chlorotoluene		ND	4.9)	1.00		
4-Chlorotoluene		ND	4.9)	1.00		
Dibromochloromethane		ND	4.9)	1.00		
1,2-Dibromo-3-Chloropropane		ND	9.7	•	1.00		
1,2-Dibromoethane		ND	4.9)	1.00		
Dibromomethane		ND	4.9)	1.00		
1,2-Dichlorobenzene		ND	4.9)	1.00		
1,3-Dichlorobenzene		ND	4.9)	1.00		
1,4-Dichlorobenzene		ND	4.9)	1.00		
Dichlorodifluoromethane		ND	4.9)	1.00		
1,1-Dichloroethane		ND	4.9)	1.00		
1,2-Dichloroethane		ND	4.9)	1.00		
1,1-Dichloroethene		ND	4.9		1.00		
c-1,2-Dichloroethene		ND	4.9		1.00		
t-1,2-Dichloroethene		ND	4.9		1.00		
1,2-Dichloropropane		ND	4.9		1.00		
1,3-Dichloropropane		ND	4.9		1.00		
2,2-Dichloropropane		ND	4.9)	1.00		

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 26 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 1.00 1,1-Dichloropropene 4.9 c-1,3-Dichloropropene ND 4.9 1.00 t-1,3-Dichloropropene ND 4.9 1.00 Ethylbenzene ND 4.9 1.00 2-Hexanone ND 49 1.00 Isopropylbenzene ND 4.9 1.00 p-Isopropyltoluene ND 4.9 1.00 Methylene Chloride ND 49 1.00 4-Methyl-2-Pentanone ND 49 1.00 Naphthalene ND 49 1.00 ND n-Propylbenzene 4.9 1.00 Styrene ND 4.9 1.00 1,1,1,2-Tetrachloroethane ND 4.9 1.00 1,1,2,2-Tetrachloroethane ND 4.9 1.00 Tetrachloroethene ND 4.9 1.00 Toluene ND 4.9 1.00 1,2,3-Trichlorobenzene ND 9.7 1.00 1,2,4-Trichlorobenzene ND 4.9 1.00 1,1,1-Trichloroethane ND 4.9 1.00 1,1,2-Trichloroethane ND 4.9 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 49 1.00 Trichloroethene ND 4.9 1.00 1,2,3-Trichloropropane ND 4.9 1.00 1,2,4-Trimethylbenzene ND 1.00 4.9 Trichlorofluoromethane ND 49 1.00 1,3,5-Trimethylbenzene ND 4.9 1.00 Vinyl Acetate ND 49 1.00 Vinyl Chloride ND 4.9 1.00 p/m-Xylene ND 4.9 1.00 o-Xylene ND 4.9 1.00 Methyl-t-Butyl Ether (MTBE) ND 4.9 1.00 Tert-Butyl Alcohol (TBA) ND 49 1.00 Diisopropyl Ether (DIPE) ND 9.7 1.00 Ethyl-t-Butyl Ether (ETBE) ND 9.7 1.00 Tert-Amyl-Methyl Ether (TAME) ND 9.7 1.00 Ethanol ND 1.00 240 Surrogate Rec. (%) **Control Limits** Qualifiers 1,4-Bromofluorobenzene 97 60-132

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 27 of 48

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	101	63-141	
1,2-Dichloroethane-d4	100	62-146	
Toluene-d8	101	80-120	

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 28 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-14-15	16-05-1326-10-A	05/17/16 12:50	Solid	GC/MS GGG	05/18/16	05/19/16 03:04	160518L025
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	12	0	1.00		
Benzene		ND	4.8	3	1.00		
Bromobenzene		ND	4.8	3	1.00		
Bromochloromethane		ND	4.8	3	1.00		
Bromodichloromethane		ND	4.8	3	1.00		
Bromoform		ND	4.8	3	1.00		
Bromomethane		ND	24		1.00		
2-Butanone		ND	48		1.00		
n-Butylbenzene		ND	4.8	3	1.00		
sec-Butylbenzene		ND	4.8	3	1.00		
tert-Butylbenzene		ND	4.8	3	1.00		
Carbon Disulfide		ND	48		1.00		
Carbon Tetrachloride		ND	4.8	3	1.00		
Chlorobenzene		ND	4.8	3	1.00		
Chloroethane		ND	4.8	3	1.00		
Chloroform		ND	4.8	3	1.00		
Chloromethane		ND	24		1.00		
2-Chlorotoluene		ND	4.8	3	1.00		
4-Chlorotoluene		ND	4.8	3	1.00		
Dibromochloromethane		ND	4.8	3	1.00		
1,2-Dibromo-3-Chloropropane		ND	9.5	5	1.00		
1,2-Dibromoethane		ND	4.8	3	1.00		
Dibromomethane		ND	4.8	3	1.00		
1,2-Dichlorobenzene		ND	4.8	3	1.00		
1,3-Dichlorobenzene		ND	4.8	3	1.00		
1,4-Dichlorobenzene		ND	4.8	3	1.00		
Dichlorodifluoromethane		ND	4.8	3	1.00		
1,1-Dichloroethane		ND	4.8		1.00		
1,2-Dichloroethane		ND	4.8	3	1.00		
1,1-Dichloroethene		ND	4.8		1.00		
c-1,2-Dichloroethene		ND	4.8	3	1.00		
t-1,2-Dichloroethene		ND	4.8		1.00		
1,2-Dichloropropane		ND	4.8		1.00		
1,3-Dichloropropane		ND	4.8		1.00		
2,2-Dichloropropane		ND	4.8	3	1.00		

,1-Dichloropropene N	Work C Prepara Method Units: Result	ation:		16-05-1326 EPA 5030C EPA 8260B ug/kg Page 29 of 48
Project: 185803664 Parameter E	Method Units:	d: 		EPA 8260B ug/kg
Project: 185803664 Parameter E	Method Units:	d: 		EPA 8260B ug/kg
Parameter E	Units:			ug/kg
Parameter E	<u>Result</u>	RI		
Parameter E		RI		EAUE /9 UL 40
,1-Dichloropropene N		RI		- 1 ago 20 01 10
	1D		<u>DF</u>	<u>Qualifiers</u>
		4.8	1.00	
· · · · · · · · · · · · · · · · · · ·	ND	4.8	1.00	
	ND	4.8	1.00	
•	ND	4.8	1.00	
	ND	48	1.00	
sopropylbenzene	ND	4.8	1.00	
o-Isopropyltoluene N	ND	4.8	1.00	
Methylene Chloride N	ND	48	1.00	
4-Methyl-2-Pentanone N	ND	48	1.00	
Naphthalene N	ND	48	1.00	
n-Propylbenzene N	ND	4.8	1.00	
Styrene N	ND	4.8	1.00	
I,1,1,2-Tetrachloroethane	ND	4.8	1.00	
I,1,2,2-Tetrachloroethane	ND	4.8	1.00	
	ND	4.8	1.00	
Foluene N	ND	4.8	1.00	
	ND	9.5	1.00	
	ND	4.8	1.00	
	ND	4.8	1.00	
	ND	4.8	1.00	
	ND	48	1.00	
	ND	4.8	1.00	
	ND	4.8	1.00	
	ND	4.8	1.00	
•	ND	48	1.00	
	ND	4.8	1.00	
	ND	48	1.00	
·		4.8		
·	ND		1.00	
•	ND	4.8	1.00	
•	ND	4.8	1.00	
	ND	4.8	1.00	
·	ND	48	1.00	
	ND	9.5	1.00	
	ND	9.5	1.00	
	ND	9.5	1.00	
Ethanol N	ND	240	1.00	
Surrogate F	Rec. (%)	Control Limits	<u>Qualifiers</u>	
-	98	60-132		

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 30 of 48

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	102	63-141	
1,2-Dichloroethane-d4	105	62-146	
Toluene-d8	100	80-120	

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 31 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-16-5	16-05-1326-11-A	05/17/16 13:07	Solid	GC/MS GGG	05/18/16	05/19/16 03:30	160518L025
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	130	0	1.00		
Benzene		ND	5.2	!	1.00		
Bromobenzene		ND	5.2	!	1.00		
Bromochloromethane		ND	5.2	!	1.00		
Bromodichloromethane		ND	5.2	!	1.00		
Bromoform		ND	5.2		1.00		
Bromomethane		ND	26		1.00		
2-Butanone		ND	52		1.00		
n-Butylbenzene		ND	5.2	!	1.00		
sec-Butylbenzene		ND	5.2	!	1.00		
tert-Butylbenzene		ND	5.2	!	1.00		
Carbon Disulfide		ND	52		1.00		
Carbon Tetrachloride		ND	5.2	!	1.00		
Chlorobenzene		ND	5.2	!	1.00		
Chloroethane		ND	5.2	!	1.00		
Chloroform		ND	5.2	!	1.00		
Chloromethane		ND	26		1.00		
2-Chlorotoluene		ND	5.2	<u>.</u>	1.00		
4-Chlorotoluene		ND	5.2	!	1.00		
Dibromochloromethane		ND	5.2	!	1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.2	!	1.00		
Dibromomethane		ND	5.2	<u>.</u>	1.00		
1,2-Dichlorobenzene		ND	5.2	<u>.</u>	1.00		
1,3-Dichlorobenzene		ND	5.2	!	1.00		
1,4-Dichlorobenzene		ND	5.2	<u>.</u>	1.00		
Dichlorodifluoromethane		ND	5.2	!	1.00		
1,1-Dichloroethane		ND	5.2		1.00		
1,2-Dichloroethane		ND	5.2	<u>.</u>	1.00		
1,1-Dichloroethene		ND	5.2		1.00		
c-1,2-Dichloroethene		ND	5.2		1.00		
t-1,2-Dichloroethene		ND	5.2		1.00		
1,2-Dichloropropane		ND	5.2	!	1.00		
1,3-Dichloropropane		ND	5.2		1.00		
2,2-Dichloropropane		ND	5.2) :	1.00		

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 185803664
 Page 32 of 48

110,000.10000004				1 agc 32 01 40
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.2	1.00	
c-1,3-Dichloropropene	ND	5.2	1.00	
t-1,3-Dichloropropene	ND	5.2	1.00	
Ethylbenzene	ND	5.2	1.00	
2-Hexanone	ND	52	1.00	
Isopropylbenzene	ND	5.2	1.00	
p-Isopropyltoluene	ND	5.2	1.00	
Methylene Chloride	ND	52	1.00	
4-Methyl-2-Pentanone	ND	52	1.00	
Naphthalene	ND	52	1.00	
n-Propylbenzene	ND	5.2	1.00	
Styrene	ND	5.2	1.00	
1,1,1,2-Tetrachloroethane	ND	5.2	1.00	
1,1,2,2-Tetrachloroethane	ND	5.2	1.00	
Tetrachloroethene	ND	5.2	1.00	
Toluene	ND	5.2	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.2	1.00	
1,1,1-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	52	1.00	
Trichloroethene	ND	5.2	1.00	
1,2,3-Trichloropropane	ND	5.2	1.00	
1,2,4-Trimethylbenzene	ND	5.2	1.00	
Trichlorofluoromethane	ND	52	1.00	
1,3,5-Trimethylbenzene	ND	5.2	1.00	
Vinyl Acetate	ND	52	1.00	
Vinyl Chloride	ND	5.2	1.00	
p/m-Xylene	ND	5.2	1.00	
o-Xylene	ND	5.2	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.2	1.00	
Tert-Butyl Alcohol (TBA)	ND	52	1.00	
Diisopropyl Ether (DIPE)	ND	10	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00	
Ethanol	ND	260	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	96	60-132		

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Proiect: 185803664		Page 33 of 48

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	101	63-141	
1,2-Dichloroethane-d4	100	62-146	
Toluene-d8	100	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 34 of 48

Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time Quality Collected Prepared Analyzed	C Batch ID
SV-16-15 16-05-1326-12-A 05/17/16 Solid GC/MS GGG 05/18/16 05/19/16 16 13:20 07:56	0518L054
<u>Parameter</u> <u>Result</u> <u>RL</u> <u>DF</u> <u>Qualifiers</u>	<u>.</u>
Acetone ND 120 1.00	
Benzene ND 4.9 1.00	
Bromobenzene ND 4.9 1.00	
Bromochloromethane ND 4.9 1.00	
Bromodichloromethane ND 4.9 1.00	
Bromoform ND 4.9 1.00	
Bromomethane ND 25 1.00	
2-Butanone ND 49 1.00	
n-Butylbenzene ND 4.9 1.00	
sec-Butylbenzene ND 4.9 1.00	
tert-Butylbenzene ND 4.9 1.00	
Carbon Disulfide ND 49 1.00	
Carbon Tetrachloride ND 4.9 1.00	
Chlorobenzene ND 4.9 1.00	
Chloroethane ND 4.9 1.00	
Chloroform ND 4.9 1.00	
Chloromethane ND 25 1.00	
2-Chlorotoluene ND 4.9 1.00	
4-Chlorotoluene ND 4.9 1.00	
Dibromochloromethane ND 4.9 1.00	
1,2-Dibromo-3-Chloropropane ND 9.8 1.00	
1,2-Dibromoethane ND 4.9 1.00	
Dibromomethane ND 4.9 1.00	
1,2-Dichlorobenzene ND 4.9 1.00	
1,3-Dichlorobenzene ND 4.9 1.00	
1,4-Dichlorobenzene ND 4.9 1.00	
Dichlorodifluoromethane ND 4.9 1.00	
1,1-Dichloroethane ND 4.9 1.00	
1,2-Dichloroethane ND 4.9 1.00	
1,1-Dichloroethene ND 4.9 1.00	
c-1,2-Dichloroethene ND 4.9 1.00	
t-1,2-Dichloroethene ND 4.9 1.00	
1,2-Dichloropropane ND 4.9 1.00	
1,3-Dichloropropane ND 4.9 1.00	
2,2-Dichloropropane ND 4.9 1.00	

Vinyl Chloride

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Tert-Amyl-Methyl Ether (TAME)

p/m-Xylene

o-Xylene

Ethanol

Surrogate

Analytical Report

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 35 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 1.00 1,1-Dichloropropene 4.9 c-1,3-Dichloropropene ND 4.9 1.00 t-1,3-Dichloropropene ND 4.9 1.00 Ethylbenzene ND 4.9 1.00 2-Hexanone ND 49 1.00 Isopropylbenzene ND 4.9 1.00 p-Isopropyltoluene ND 4.9 1.00 Methylene Chloride ND 49 1.00 4-Methyl-2-Pentanone ND 49 1.00 Naphthalene ND 49 1.00 ND n-Propylbenzene 4.9 1.00 Styrene ND 4.9 1.00 1,1,1,2-Tetrachloroethane ND 4.9 1.00 1,1,2,2-Tetrachloroethane ND 4.9 1.00 Tetrachloroethene ND 4.9 1.00 Toluene ND 4.9 1.00 1,2,3-Trichlorobenzene ND 9.8 1.00 1,2,4-Trichlorobenzene ND 4.9 1.00 1,1,1-Trichloroethane ND 4.9 1.00 1,1,2-Trichloroethane ND 4.9 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 49 1.00 Trichloroethene ND 4.9 1.00 ND 1,2,3-Trichloropropane 4.9 1.00 1,2,4-Trimethylbenzene ND 1.00 4.9 Trichlorofluoromethane ND 49 1.00 1,3,5-Trimethylbenzene ND 4.9 1.00 Vinyl Acetate ND 49 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

ND

ND

ND

ND

ND

ND

ND

ND

ND

96

Rec. (%)

4.9

4.9

4.9

4.9

49

9.8

9.8

9.8

250

60-132

Control Limits

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 36 of 48

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	102	63-141	
1,2-Dichloroethane-d4	102	62-146	
Toluene-d8	101	80-120	

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 37 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-15-5	16-05-1326-13-A	05/17/16 13:55	Solid	GC/MS GGG	05/18/16	05/19/16 08:23	160518L054
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	13	0	1.00		
Benzene		ND	5.2	2	1.00		
Bromobenzene		ND	5.2	2	1.00		
Bromochloromethane		ND	5.2	2	1.00		
Bromodichloromethane		ND	5.2	2	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	26		1.00		
2-Butanone		ND	52		1.00		
n-Butylbenzene		ND	5.2	2	1.00		
sec-Butylbenzene		ND	5.2	2	1.00		
tert-Butylbenzene		ND	5.2	2	1.00		
Carbon Disulfide		ND	52		1.00		
Carbon Tetrachloride		ND	5.2	2	1.00		
Chlorobenzene		ND	5.2	2	1.00		
Chloroethane		ND	5.2	2	1.00		
Chloroform		ND	5.2	2	1.00		
Chloromethane		ND	26		1.00		
2-Chlorotoluene		ND	5.2	2	1.00		
4-Chlorotoluene		ND	5.2	2	1.00		
Dibromochloromethane		ND	5.2	2	1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.2	2	1.00		
Dibromomethane		ND	5.2	2	1.00		
1,2-Dichlorobenzene		ND	5.2	2	1.00		
1,3-Dichlorobenzene		ND	5.2	2	1.00		
1,4-Dichlorobenzene		ND	5.2	2	1.00		
Dichlorodifluoromethane		ND	5.2	2	1.00		
1,1-Dichloroethane		ND	5.2		1.00		
1,2-Dichloroethane		ND	5.2	2	1.00		
1,1-Dichloroethene		ND	5.2		1.00		
c-1,2-Dichloroethene		ND	5.2		1.00		
t-1,2-Dichloroethene		ND	5.2		1.00		
1,2-Dichloropropane		ND	5.2	2	1.00		
1,3-Dichloropropane		ND	5.2		1.00		
2,2-Dichloropropane		ND	5.2	2	1.00		

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 38 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 5.2 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 5.2 1.00 t-1,3-Dichloropropene ND 5.2 1.00 Ethylbenzene ND 5.2 1.00 2-Hexanone ND 52 1.00 Isopropylbenzene ND 5.2 1.00 p-Isopropyltoluene ND 5.2 1.00 Methylene Chloride ND 52 1.00 4-Methyl-2-Pentanone ND 52 1.00 Naphthalene ND 52 1.00 ND n-Propylbenzene 5.2 1.00 Styrene ND 5.2 1.00 1,1,1,2-Tetrachloroethane ND 5.2 1.00 1,1,2,2-Tetrachloroethane ND 5.2 1.00 Tetrachloroethene ND 5.2 1.00 Toluene ND 5.2 1.00 1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichlorobenzene ND 5.2 1.00 1,1,1-Trichloroethane 5.2 ND 1.00 1,1,2-Trichloroethane ND 5.2 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 52 1.00 Trichloroethene ND 5.2 1.00 ND 5.2 1,2,3-Trichloropropane 1.00 1,2,4-Trimethylbenzene ND 5.2 1.00 Trichlorofluoromethane ND 52 1.00 1,3,5-Trimethylbenzene ND 5.2 1.00 Vinyl Acetate ND 52 1.00 Vinyl Chloride ND 5.2 1.00 p/m-Xylene ND 5.2 1.00 o-Xylene ND 5.2 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.2 1.00 Tert-Butyl Alcohol (TBA) ND 52 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Surrogate

1,4-Bromofluorobenzene

Control Limits

60-132

Qualifiers

Rec. (%)

95

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 39 of 48

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	100	63-141	
1,2-Dichloroethane-d4	99	62-146	
Toluene-d8	100	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 40 of 48

SV-15-15 16-05-1326-14-A 05/17/16 Solid GC/MS GGC 05/18/16 05/18/16 160518L054 Parameter Result RL DE Qualifiers Acetone ND 130 1.00 1.00 Bromochorometane ND 5.1 1.00 1.00 Bromochoromethane ND 5.1 1.00 1.00 Bromoform ND 5.1 1.00 1.00 1.00 1.00 1.00 1.00	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Actone ND 130 1.00 Benzene ND 5.1 1.00 Bromobenzene ND 5.1 1.00 Bromochloromethane ND 5.1 1.00 Bromochloromethane ND 5.1 1.00 Bromoform ND 5.1 1.00 Bromomethane ND 5.1 1.00 2-Butanone ND 5.1 1.00 -Butylbenzene ND 5.1 1.00 see-Butylbenzene ND 5.1 1.00 see-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Chlorothane ND 5.1 1.00 Chlorothane ND 5.1 1.00 Chlorothane ND 5.1 1.00 Chlorotoluene ND 5.1 1.00 Chlorotoluene ND 5.1 1.00	SV-15-15	16-05-1326-14-A		Solid	GC/MS GGG	05/18/16	05/19/16 08:49	160518L054
Benzene ND 5.1 1.00 Bromochorene ND 5.1 1.00 Bromochichormethane ND 5.1 1.00 Bromoclichicromethane ND 5.1 1.00 Bromodichichormethane ND 5.1 1.00 Bromomethane ND 5.1 1.00 2-Butanone ND 5.1 1.00 -Butylbenzene ND 5.1 1.00 sec-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Chloroethane ND 5.1 1.00 1-2-Dibromoethane ND 5.1	<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Bromobenzene ND 5.1 1.00 Bromochloromethane ND 5.1 1.00 Bromochloromethane ND 5.1 1.00 Bromochloromethane ND 5.1 1.00 Bromomethane ND 26 1.00 2-Butanone ND 5.1 1.00 n-Butylbenzene ND 5.1 1.00 sec-Butylbenzene ND 5.1 1.00 ser-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chlorothane ND 5.1 1.00	Acetone		ND	13	0	1.00		
Bromochloromethane ND 5.1 1.00 Bromofichloromethane ND 5.1 1.00 Bromoferm ND 5.1 1.00 Bromomethane ND 26 1.00 2-Butanone ND 5.1 1.00 n-Butylbenzene ND 5.1 1.00 ser-Butylbenzene ND 5.1 1.00 carbon Disulfide ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chlorofothane ND 5.1 1.00 L'Chlorofothare ND 5.1 1.00 L'2-Dibromo-3-Chloropropane ND 5.1	Benzene		ND	5.1	1	1.00		
Bromodichloromethane ND 5.1 1.00 Bromoform ND 5.1 1.00 Bromomethane ND 26 1.00 2-Butanone ND 51 1.00 n-Butylbenzene ND 5.1 1.00 sec-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Chlorobrace ND 5.1 1.00 Chlorobrace ND 5.1 1.00 Chloroform ND 5.1 1.00 Chloroformethane ND 5.1 1.00 Chloroformethane ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 <	Bromobenzene		ND	5.1	1	1.00		
Bromoform ND 5.1 1.00 Brommethane ND 26 1.00 2-Butanone ND 51 1.00 n-Butylbenzene ND 5.1 1.00 sec-Butylbenzene ND 5.1 1.00 tert-Butylbenzene ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chlorochtane ND 5.1 1.00 Chlorochtane ND 5.1 1.00 2-Chlorotoluene ND 26 1.00 4-Chlorotoluene ND 5.1 1.00 1-2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,2-Dichlorobenzene ND <td< td=""><td>Bromochloromethane</td><td></td><td>ND</td><td>5.1</td><td>1</td><td>1.00</td><td></td><td></td></td<>	Bromochloromethane		ND	5.1	1	1.00		
Bromomethane ND 26 1.00 2-Butanone ND 51 1.00 n-Butylbenzene ND 5.1 1.00 sec-Butylbenzene ND 5.1 1.00 tert-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Chloroethane ND 5.1 1.00 Chloroethane ND 5.1 1.00 Chloroethane ND 5.1 1.00 Chloroethane ND 5.1 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 1-2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND <td< td=""><td>Bromodichloromethane</td><td></td><td>ND</td><td>5.1</td><td>1</td><td>1.00</td><td></td><td></td></td<>	Bromodichloromethane		ND	5.1	1	1.00		
2-Butanone ND 51 1.00 n-Butylbenzene ND 5.1 1.00 sec-Butylbenzene ND 5.1 1.00 tert-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chlorotehane ND 5.1 1.00 Chlorotehane ND 5.1 1.00 Chlorotehane ND 5.1 1.00 Chloroteluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 1/2-Dibromoethane ND 5.1 1.00 1/2-Dibromoethane ND 5.1 1.00 1/2-Dichlorobenzene ND 5.1 1.00 1/3-Dichlorobenzene ND 5.1 1.00 1/2-Dichloroethane ND 5.1	Bromoform		ND	5.1	İ	1.00		
n-Butylbenzene ND 5.1 1.00 sec-Butylbenzene ND 5.1 1.00 tert-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 5.1 1.00 Carbon Tetrachloride ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chloroethane ND 5.1 1.00 Chloroform ND 5.1 1.00 Chlorotolune ND 5.1 1.00 4-Chlorotolune ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND	Bromomethane		ND	26		1.00		
sec-Butylbenzene ND 5.1 1.00 tert-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 51 1.00 Carbon Tetrachloride ND 5.1 1.00 Chloroetane ND 5.1 1.00 Chloroethane ND 5.1 1.00 Chloroform ND 5.1 1.00 Chlorotolune ND 5.1 1.00 4-Chlorotolune ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 Dichlorothane ND <	2-Butanone		ND	51		1.00		
tert-Butylbenzene ND 5.1 1.00 Carbon Disulfide ND 51 1.00 Carbon Tetrachloride ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chloroethane ND 5.1 1.00 Chloroform ND 5.1 1.00 Chlorothane ND 5.1 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 Dibromoethane ND 5.1 1.00 1,2-Dibromoethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1	n-Butylbenzene		ND	5.1	1	1.00		
Carbon Disulfide ND 51 1.00 Carbon Tetrachloride ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chlorobethane ND 5.1 1.00 Chloroform ND 5.1 1.00 Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorothuene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorothuene ND 5.1 1.00 1/2-Dibrome-3-Chloropropane ND 5.1 1.00 1,2-Dibrome-3-Chloropropane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1	sec-Butylbenzene		ND	5.1	1	1.00		
Carbon Tetrachloride ND 5.1 1.00 Chlorobenzene ND 5.1 1.00 Chlorotethane ND 5.1 1.00 Chloroform ND 5.1 1.00 Chlorotoluene ND 26 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 Dibromochloromethane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromoethane ND 5.1 1.00 1,2-Dibromomethane ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,4-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane <	tert-Butylbenzene		ND	5.1	1	1.00		
Chlorobenzene ND 5.1 1.00 Chloroethane ND 5.1 1.00 Chloroform ND 5.1 1.00 Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 Dibromochloromethane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromoethane ND 5.1 1.00 1,2-Dibromoethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,4-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,2-Dichloroethene ND <td>Carbon Disulfide</td> <td></td> <td>ND</td> <td>51</td> <td></td> <td>1.00</td> <td></td> <td></td>	Carbon Disulfide		ND	51		1.00		
Chloroethane ND 5.1 1.00 Chloroform ND 5.1 1.00 Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 Dibromochloromethane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.1 1.00 1,2-Dibromoethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorothane ND 5.1 1.00 1,1-Dichlorothane ND 5.1 1.00 1,1-Dichlorothane ND 5.1 1.00 1,1-Dichlorothene ND 5.1 1.00 1,1-Dichlorothene ND 5.1 1.00 1,1-Dichlorothene ND 5.1 1.00 1,2-Dichloroptopane ND	Carbon Tetrachloride		ND	5.1	1	1.00		
Chloroform ND 5.1 1.00 Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 Dibromochloromethane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromoethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,4-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1-1,2-Dichloroethene ND 5.1 1.00 1-1,2-Dichloropropane ND 5.1 1.00 1,2-Dichloropropane <td>Chlorobenzene</td> <td></td> <td>ND</td> <td>5.1</td> <td>1</td> <td>1.00</td> <td></td> <td></td>	Chlorobenzene		ND	5.1	1	1.00		
Chloromethane ND 26 1.00 2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 Dibromochloromethane ND 5.1 1.00 1,2-Dibromochane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,1-Dichlorobethane ND 5.1 1.00 1,2-Dichlorobethane ND 5.1 1.00 1,1-Dichlorobethene ND 5.1 1.00 t-1,2-Dichlorobethene ND 5.1 1.00 t-1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropa	Chloroethane		ND	5.1	1	1.00		
2-Chlorotoluene ND 5.1 1.00 4-Chlorotoluene ND 5.1 1.00 Dibromochloromethane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 5.1 1.00 Dibromomethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1-1,2-Dichloroptoethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane	Chloroform		ND	5.1	1	1.00		
4-Chlorotoluene ND 5.1 1.00 Dibromochloromethane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.1 1.00 Dibromomethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	Chloromethane		ND	26		1.00		
Dibromochloromethane ND 5.1 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.1 1.00 Dibromomethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 -1,2-Dichloroethene ND 5.1 1.00 -1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	2-Chlorotoluene		ND	5.1	1	1.00		
1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.1 1.00 Dibromomethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 t-2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	4-Chlorotoluene		ND	5.1	1	1.00		
1,2-Dibromoethane ND 5.1 1.00 Dibromomethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	Dibromochloromethane		ND	5.1	1	1.00		
1,2-Dibromoethane ND 5.1 1.00 Dibromomethane ND 5.1 1.00 1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00			ND			1.00		
1,2-Dichlorobenzene ND 5.1 1.00 1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	Dibromomethane		ND	5.1	1	1.00		
1,3-Dichlorobenzene ND 5.1 1.00 1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	1,2-Dichlorobenzene		ND	5.1	1	1.00		
1,4-Dichlorobenzene ND 5.1 1.00 Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	1,3-Dichlorobenzene					1.00		
Dichlorodifluoromethane ND 5.1 1.00 1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	1,4-Dichlorobenzene		ND	5.1	1	1.00		
1,1-Dichloroethane ND 5.1 1.00 1,2-Dichloroethane ND 5.1 1.00 1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	Dichlorodifluoromethane		ND			1.00		
1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	1,1-Dichloroethane					1.00		
1,1-Dichloroethene ND 5.1 1.00 c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	1,2-Dichloroethane		ND	5.1	1	1.00		
c-1,2-Dichloroethene ND 5.1 1.00 t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	1,1-Dichloroethene					1.00		
t-1,2-Dichloroethene ND 5.1 1.00 1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00	·							
1,2-Dichloropropane ND 5.1 1.00 1,3-Dichloropropane ND 5.1 1.00								
1,3-Dichloropropane ND 5.1 1.00	·							
	2,2-Dichloropropane		ND			1.00		

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 185803664
 Page 41 of 48

Parameter Result RL DE Qualifiers 1.1-Dichloropropene ND 5.1 1.00 -1,3-Dichloropropene ND 5.1 1.00 £1,3-Dichloropropene ND 5.1 1.00 Ethylbenzene ND 5.1 1.00 Ethylbenzene ND 5.1 1.00 Sepropylbenzene ND 5.1 1.00 p-Issopropylloulene ND 5.1 1.00 Methylene Chloride ND 5.1 1.00 4-Methyl-2-Pentanone ND 5.1 1.00 Methylene Chloride ND 5.1 1.00 4-Methyl-2-Pentanone ND 5.1 1.00 Naphthalene ND 5.1 1.00 NP 5.1 1.00 1.00 1.1,2-Tetrachloroethane ND 5.1 1.00 1.1,2-Tetrachloroethane ND 5.1 1.00 1.2,3-Trichlorobenzene ND 5.1 1.00 1.1,1-Tr	ject: 185803664				Page 41 of 48
1,1-Dichloropropene	ameter	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Chilosopropene ND S.1 1.00					
Ethylbenzene ND 5.1 1.00 2-Hexanone ND 51 1.00 Isopropylbenzene ND 5.1 1.00 Isopropylbenzene ND 5.1 1.00 Methylene Chloride ND 5.1 1.00 Methylene Chloride ND 51 1.00 Methylene Chloride ND 51 1.00 Naphthalene ND 51 1.00 Naphthalene ND 51 1.00 Naphthalene ND 51 1.00 Naphthalene ND 51 1.00 Isopropylbenzene ND 5.1 1.00 Isopropylbenzene N	3-Dichloropropene	ND	5.1	1.00	
2-Hexanone	3-Dichloropropene	ND	5.1	1.00	
Isopropylbenzene	/lbenzene	ND	5.1	1.00	
P-Isopropyltoluene	exanone	ND	51	1.00	
Methylene Chloride ND 51 1.00 4-Methyl-2-Pentanone ND 51 1.00 Naphthalene ND 51 1.00 n-Propylbenzene ND 5.1 1.00 Styrene ND 5.1 1.00 1,1,1,2-Tetrachloroethane ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 Tetrachloroethane ND 5.1 1.00 Toluene ND 5.1 1.00 1,2,3-Trichloroethane ND 5.1 1.00 1,2,3-Trichloroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 <	propylbenzene	ND	5.1	1.00	
A-Methyl-2-Pentanone ND 51 1.00	opropyltoluene	ND	5.1	1.00	
Naphthalene ND 51 1.00 n-Propylbenzene ND 5.1 1.00 Styrene ND 5.1 1.00 1,1,1,2-Tetrachloroethane ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 Toluene ND 5.1 1.00 Toluene ND 5.1 1.00 1,2,3-Trichlorobenzene ND 1.0 1.00 1,2,4-Trichloroethane ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 Trichloroethane ND 5.1 1.00 Trichloropropane ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Acetate ND	hylene Chloride	ND	51	1.00	
N-Propylbenzene	ethyl-2-Pentanone	ND	51	1.00	
Styrene ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 1,1,2,2-Tetrachloroethane ND 5.1 1.00 Tetrachloroethane ND 5.1 1.00 Tetrachloroethane ND 5.1 1.00 Toluene ND 5.1 1.00 1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichloroethane ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 5.1 1.00 1,2,3-Trichloro-1,2,2-Trifluoroethane ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,3-Trimethylbenzene ND 5.1 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.0	hthalene	ND	51	1.00	
1,1,1,2-Tetrachloroethane	ropylbenzene	ND	5.1	1.00	
1,1,2,2-Tetrachloroethane	rene	ND	5.1	1.00	
Tetrachloroethene ND 5.1 1.00 Toluene ND 5.1 1.00 1.2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichloroethane ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 Wethyl-t-Butyl Ether (MT	1,2-Tetrachloroethane	ND	5.1	1.00	
Toluene ND 5.1 1.00 1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichloroethane ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 5.1 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 yimyl Acetate ND 5.1 1.00 vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND <td>2,2-Tetrachloroethane</td> <td>ND</td> <td>5.1</td> <td>1.00</td> <td></td>	2,2-Tetrachloroethane	ND	5.1	1.00	
1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichlorobenzene ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropopane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 ymx Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 5.1 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl	achloroethene	ND	5.1	1.00	
1,2,4-Trichlorobenzene ND 5.1 1.00 1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 Trichlorofluoromethane ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 Testablyl Alcohol (TBA) ND	uene	ND	5.1	1.00	
1,1,1-Trichloroethane ND 5.1 1.00 1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Ethanol ND 260 1.00 Surrogate </td <td>3-Trichlorobenzene</td> <td>ND</td> <td>10</td> <td>1.00</td> <td></td>	3-Trichlorobenzene	ND	10	1.00	
1,1,2-Trichloroethane ND 5.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00 <td>4-Trichlorobenzene</td> <td>ND</td> <td>5.1</td> <td>1.00</td> <td></td>	4-Trichlorobenzene	ND	5.1	1.00	
1,1,2-Trichloro-1,2,2-Triffluoroethane ND 51 1.00 Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 5.1 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	1-Trichloroethane	ND	5.1	1.00	
Trichloroethene ND 5.1 1.00 1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 5.1 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 5.1 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	2-Trichloroethane	ND	5.1	1.00	
1,2,3-Trichloropropane ND 5.1 1.00 1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	2-Trichloro-1,2,2-Trifluoroethane	ND	51	1.00	
1,2,4-Trimethylbenzene ND 5.1 1.00 Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Methyl-t-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	hloroethene	ND	5.1	1.00	
Trichlorofluoromethane ND 51 1.00 1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	3-Trichloropropane	ND	5.1	1.00	
1,3,5-Trimethylbenzene ND 5.1 1.00 Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	4-Trimethylbenzene	ND	5.1	1.00	
Vinyl Acetate ND 51 1.00 Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	hlorofluoromethane	ND	51	1.00	
Vinyl Chloride ND 5.1 1.00 p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	5-Trimethylbenzene	ND	5.1	1.00	
p/m-Xylene ND 5.1 1.00 o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00	/I Acetate	ND	51	1.00	
o-Xylene ND 5.1 1.00 Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00 Surrogate Rec. (%) Control Limits Qualifiers	/l Chloride	ND	5.1	1.00	
Methyl-t-Butyl Ether (MTBE) ND 5.1 1.00 Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00 Surrogate Rec. (%) Control Limits Qualifiers	-Xylene	ND	5.1	1.00	
Tert-Butyl Alcohol (TBA) ND 51 1.00 Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00 Surrogate Rec. (%) Control Limits Qualifiers	ylene	ND	5.1	1.00	
Diisopropyl Ether (DIPE) ND 10 1.00 Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00 Surrogate Rec. (%) Control Limits Qualifiers	hyl-t-Butyl Ether (MTBE)	ND	5.1	1.00	
Ethyl-t-Butyl Ether (ETBE) ND 10 1.00 Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00 Surrogate Rec. (%) Control Limits Qualifiers	-Butyl Alcohol (TBA)	ND	51	1.00	
Tert-Amyl-Methyl Ether (TAME) ND 10 1.00 Ethanol ND 260 1.00 Surrogate Rec. (%) Control Limits Qualifiers	opropyl Ether (DIPE)	ND	10	1.00	
Ethanol ND 260 1.00 Surrogate Rec. (%) Control Limits Qualifiers	/I-t-Butyl Ether (ETBE)	ND	10	1.00	
Surrogate Rec. (%) Control Limits Qualifiers	-Amyl-Methyl Ether (TAME)	ND	10	1.00	
	anol	ND	260	1.00	
	rogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene 98 60-132	Bromofluorobenzene	98	60-132		

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 42 of 48

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	101	63-141	
1,2-Dichloroethane-d4	103	62-146	
Toluene-d8	101	80-120	

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 43 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-11159	N/A	Solid	GC/MS GGG	05/18/16	05/18/16 17:56	160518L025
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	12	0	1.00		
Benzene		ND	5.0)	1.00		
Bromobenzene		ND	5.0)	1.00		
Bromochloromethane		ND	5.0)	1.00		
Bromodichloromethane		ND	5.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	25		1.00		
2-Butanone		ND	50		1.00		
n-Butylbenzene		ND	5.0)	1.00		
sec-Butylbenzene		ND	5.0)	1.00		
tert-Butylbenzene		ND	5.0)	1.00		
Carbon Disulfide		ND	50		1.00		
Carbon Tetrachloride		ND	5.0)	1.00		
Chlorobenzene		ND	5.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	5.0)	1.00		
Chloromethane		ND	25		1.00		
2-Chlorotoluene		ND	5.0)	1.00		
4-Chlorotoluene		ND	5.0)	1.00		
Dibromochloromethane		ND	5.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.0)	1.00		
Dibromomethane		ND	5.0)	1.00		
1,2-Dichlorobenzene		ND	5.0)	1.00		
1,3-Dichlorobenzene		ND	5.0)	1.00		
1,4-Dichlorobenzene		ND	5.0)	1.00		
Dichlorodifluoromethane		ND	5.0)	1.00		
1,1-Dichloroethane		ND	5.0)	1.00		
1,2-Dichloroethane		ND	5.0)	1.00		
1,1-Dichloroethene		ND	5.0		1.00		
c-1,2-Dichloroethene		ND	5.0)	1.00		
t-1,2-Dichloroethene		ND	5.0		1.00		
1,2-Dichloropropane		ND	5.0		1.00		
1,3-Dichloropropane		ND	5.0		1.00		
2,2-Dichloropropane							

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: 185803664
 Page 44 of 48

110,000.10000004				1 agc ++ 01 +0
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	50	1.00	
Diisopropyl Ether (DIPE)	ND	10	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00	
Ethanol	ND	250	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	98	60-132		

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 45 of 48

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	102	63-141	
1,2-Dichloroethane-d4	101	62-146	
Toluene-d8	101	80-120	

StantecDate Received:05/18/1625864-F Business Center DriveWork Order:16-05-1326Redlands, CA 92374-4515Preparation:EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/kg

Project: 185803664 Page 46 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-11164	N/A	Solid	GC/MS GGG	05/18/16	05/19/16 05:43	160518L054
Parameter		Result	RL		<u>DF</u>	Qua	lifiers
Acetone		ND	120)	1.00		
Benzene		ND	5.0		1.00		
Bromobenzene		ND	5.0		1.00		
Bromochloromethane		ND	5.0		1.00		
Bromodichloromethane		ND	5.0		1.00		
Bromoform		ND	5.0		1.00		
Bromomethane		ND	25		1.00		
2-Butanone		ND	50		1.00		
n-Butylbenzene		ND	5.0		1.00		
sec-Butylbenzene		ND	5.0		1.00		
tert-Butylbenzene		ND	5.0		1.00		
Carbon Disulfide		ND	50		1.00		
Carbon Tetrachloride		ND	5.0		1.00		
Chlorobenzene		ND	5.0		1.00		
Chloroethane		ND	5.0		1.00		
Chloroform		ND	5.0		1.00		
Chloromethane		ND	25		1.00		
2-Chlorotoluene		ND	5.0		1.00		
4-Chlorotoluene		ND	5.0		1.00		
Dibromochloromethane		ND	5.0		1.00		
1,2-Dibromo-3-Chloropropane		ND	10		1.00		
1,2-Dibromoethane		ND	5.0		1.00		
Dibromomethane		ND	5.0		1.00		
1,2-Dichlorobenzene		ND	5.0		1.00		
1,3-Dichlorobenzene		ND	5.0		1.00		
1,4-Dichlorobenzene		ND	5.0		1.00		
Dichlorodifluoromethane		ND	5.0		1.00		
1,1-Dichloroethane		ND	5.0		1.00		
1,2-Dichloroethane		ND	5.0		1.00		
1,1-Dichloroethene		ND	5.0		1.00		
c-1,2-Dichloroethene		ND	5.0		1.00		
t-1,2-Dichloroethene		ND	5.0		1.00		
1,2-Dichloropropane		ND	5.0		1.00		
1,3-Dichloropropane		ND	5.0		1.00		
2,2-Dichloropropane		ND	5.0		1.00		

1,3,5-Trimethylbenzene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Tert-Amyl-Methyl Ether (TAME)

Vinyl Acetate

Vinyl Chloride

p/m-Xylene

o-Xylene

Ethanol

Surrogate

Analytical Report

Stantec Date Received: 05/18/16 Work Order: 16-05-1326 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/kg Project: 185803664 Page 47 of 48 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 5.0 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 5.0 1.00 t-1,3-Dichloropropene ND 5.0 1.00 Ethylbenzene ND 5.0 1.00 2-Hexanone ND 50 1.00 Isopropylbenzene ND 5.0 1.00 p-Isopropyltoluene ND 5.0 1.00 Methylene Chloride ND 50 1.00 4-Methyl-2-Pentanone ND 50 1.00 Naphthalene ND 50 1.00 ND n-Propylbenzene 5.0 1.00 Styrene ND 5.0 1.00 1,1,1,2-Tetrachloroethane ND 5.0 1.00 1,1,2,2-Tetrachloroethane ND 5.0 1.00 Tetrachloroethene ND 5.0 1.00 Toluene ND 5.0 1.00 1,2,3-Trichlorobenzene ND 10 1.00 1,2,4-Trichlorobenzene ND 5.0 1.00 1,1,1-Trichloroethane ND 5.0 1.00 1,1,2-Trichloroethane ND 5.0 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 50 1.00 Trichloroethene ND 5.0 1.00 1,2,3-Trichloropropane ND 5.0 1.00 1,2,4-Trimethylbenzene ND 5.0 1.00 Trichlorofluoromethane ND 50 1.00

ND

96

Rec. (%)

5.0

50

5.0

5.0

5.0

5.0

50

10

10

10

250

60-132

Control Limits

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

Stantec	Date Received:	05/18/16
25864-F Business Center Drive	Work Order:	16-05-1326
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: 185803664		Page 48 of 48

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	100	63-141	
1,2-Dichloroethane-d4	101	62-146	
Toluene-d8	101	80-120	

Quality Control - Spike/Spike Duplicate

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C
Method: EPA 8260B

Project: 185803664 Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
16-05-1330-1	Sample		Solid	GC	/MS GGG	05/18/16	05/18/16	18:39	160518S011	
16-05-1330-1	Matrix Spike		Solid	GC	/MS GGG	05/18/16	05/18/16	19:06	160518S011	
16-05-1330-1	Matrix Spike	Duplicate	Solid	GC	/MS GGG	05/18/16	05/18/16	19:33	160518S011	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	ND	50.00	37.09	74	35.87	72	61-127	3	0-20	
Carbon Tetrachloride	ND	50.00	37.26	75	35.74	71	51-135	4	0-29	
Chlorobenzene	ND	50.00	37.52	75	36.53	73	57-123	3	0-20	
1,2-Dibromoethane	ND	50.00	41.41	83	41.07	82	64-124	1	0-20	
1,2-Dichlorobenzene	ND	50.00	38.62	77	36.93	74	35-131	4	0-25	
1,2-Dichloroethane	ND	50.00	39.68	79	39.56	79	80-120	0	0-20	3
1,1-Dichloroethene	ND	50.00	37.84	76	35.72	71	47-143	6	0-25	
Ethylbenzene	ND	50.00	37.12	74	35.85	72	57-129	3	0-22	
Toluene	ND	50.00	37.85	76	36.74	73	63-123	3	0-20	
Trichloroethene	ND	50.00	38.64	77	37.25	75	44-158	4	0-20	
Vinyl Chloride	ND	50.00	45.85	92	39.83	80	49-139	14	0-47	
p/m-Xylene	ND	100.0	74.61	75	72.29	72	70-130	3	0-30	
o-Xylene	ND	50.00	38.00	76	37.17	74	70-130	2	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	43.53	87	43.21	86	57-123	1	0-21	
Tert-Butyl Alcohol (TBA)	ND	250.0	212.0	85	222.1	89	30-168	5	0-34	
Diisopropyl Ether (DIPE)	ND	50.00	39.91	80	38.90	78	57-129	3	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	41.04	82	40.90	82	55-127	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	40.90	82	40.99	82	58-124	0	0-20	

79

395.5

79

17-167

1

0-47

ND

500.0

392.8

Ethanol

Quality Control - Spike/Spike Duplicate

Stantec Date Received: 05/18/16
25864-F Business Center Drive Work Order: 16-05-1326
Redlands, CA 92374-4515 Preparation: EPA 5030C
Method: EPA 8260B

Project: 185803664 Page 2 of 2

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Number
SV-11-5	Sample		Solid	GC	/MS GGG	05/18/16	05/18/16 05/19/16 06:10		160518S031	
SV-11-5	Matrix Spike		Solid	GC	/MS GGG	05/18/16	05/19/16	06:36	160518S031	
SV-11-5	Matrix Spike	Duplicate	Solid	GC	MS GGG	05/18/16	05/19/16	07:03	160518 S 031	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	50.00	41.32	83	44.04	88	61-127	6	0-20	
Carbon Tetrachloride	ND	50.00	43.80	88	45.50	91	51-135	4	0-29	
Chlorobenzene	ND	50.00	41.22	82	44.17	88	57-123	7	0-20	
1,2-Dibromoethane	ND	50.00	41.43	83	45.45	91	64-124	9	0-20	
1,2-Dichlorobenzene	ND	50.00	40.14	80	45.19	90	35-131	12	0-25	
1,2-Dichloroethane	ND	50.00	41.44	83	44.58	89	80-120	7	0-20	
1,1-Dichloroethene	ND	50.00	43.42	87	45.52	91	47-143	5	0-25	
Ethylbenzene	ND	50.00	42.71	85	45.28	91	57-129	6	0-22	
Toluene	ND	50.00	43.13	86	45.33	91	63-123	5	0-20	
Trichloroethene	ND	50.00	45.66	91	48.73	97	44-158	6	0-20	
Vinyl Chloride	ND	50.00	45.54	91	47.27	95	49-139	4	0-47	
p/m-Xylene	ND	100.0	84.88	85	90.11	90	70-130	6	0-30	
o-Xylene	ND	50.00	43.01	86	46.09	92	70-130	7	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	42.83	86	47.04	94	57-123	9	0-21	
Tert-Butyl Alcohol (TBA)	ND	250.0	271.0	108	289.5	116	30-168	7	0-34	
Diisopropyl Ether (DIPE)	ND	50.00	42.30	85	45.80	92	57-129	8	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	42.73	85	46.63	93	55-127	9	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	42.29	85	46.06	92	58-124	9	0-20	
Ethanol	ND	500.0	610.7	122	666.1	133	17-167	9	0-47	

05/18/16

16-05-1326 EPA 5030C

Project: 185803664

Quality Control - LCS

Stantec Date Received:

25864-F Business Center Drive Work Order:

Redlands, CA 92374-4515 Preparation:

Method: EPA 8260B Page 1 of 2

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Batch	Number
099-12-796-11159	LCS	Solid	GC/MS G	GG 05/18/16	05/18/16	16:10 160518L02	:5
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Benzene		50.00	49.09	98	78-120	71-127	
Carbon Tetrachloride		50.00	51.47	103	49-139	34-154	
Chlorobenzene		50.00	50.02	100	79-120	72-127	
,2-Dibromoethane		50.00	50.82	102	80-120	73-127	
,2-Dichlorobenzene		50.00	51.61	103	75-120	68-128	
,2-Dichloroethane		50.00	49.52	99	80-120	73-127	
,1-Dichloroethene		50.00	51.26	103	74-122	66-130	
thylbenzene		50.00	51.01	102	76-120	69-127	
oluene		50.00	51.13	102	77-120	70-127	
richloroethene		50.00	53.08	106	80-120	73-127	
'inyl Chloride		50.00	49.71	99	68-122	59-131	
/m-Xylene		100.0	102.7	103	75-125	67-133	
-Xylene		50.00	52.33	105	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)		50.00	52.86	106	77-120	70-127	
ert-Butyl Alcohol (TBA)		250.0	234.1	94	68-122	59-131	
iisopropyl Ether (DIPE)		50.00	50.68	101	78-120	71-127	
thyl-t-Butyl Ether (ETBE)		50.00	52.25	105	78-120	71-127	
ert-Amyl-Methyl Ether (TAME)		50.00	51.33	103	75-120	68-128	
thanol		500.0	432.7	87	56-140	42-154	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Quality Control - LCS

Stantec 25864-F Business Center Drive Redlands, CA 92374-4515 Date Received: Work Order: Preparation: Method:

16-05-1326 EPA 5030C EPA 8260B

05/18/16

Project: 185803664 Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepa	red Date Analyze	d LCS Batch Number	er
099-12-796-11164	LCS	Solid	GC/MS GC	G 05/18/16	05/19/16 04:5	0 160518L054	
Parameter	<u>s</u>	pike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL Qua	alifiers
Benzene	50	0.00	48.40	97	78-120	71-127	
Carbon Tetrachloride	50	0.00	49.74	99	49-139	34-154	
Chlorobenzene	50	0.00	49.34	99	79-120	72-127	
1,2-Dibromoethane	50	0.00	50.56	101	80-120	73-127	
1,2-Dichlorobenzene	50	0.00	50.39	101	75-120	68-128	
1,2-Dichloroethane	50	0.00	50.17	100	80-120	73-127	
1,1-Dichloroethene	50	0.00	49.37	99	74-122	66-130	
Ethylbenzene	50	0.00	49.64	99	76-120	69-127	
Toluene	50	0.00	50.11	100	77-120	70-127	
Trichloroethene	50	0.00	50.90	102	80-120	73-127	
Vinyl Chloride	50	0.00	47.90	96	68-122	59-131	
p/m-Xylene	10	00.0	99.20	99	75-125	67-133	
o-Xylene	50	0.00	50.86	102	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)	50	0.00	52.29	105	77-120	70-127	
Tert-Butyl Alcohol (TBA)	25	50.0	250.2	100	68-122	59-131	
Diisopropyl Ether (DIPE)	50	0.00	50.99	102	78-120	71-127	
Ethyl-t-Butyl Ether (ETBE)	50	0.00	51.73	103	78-120	71-127	
Tert-Amyl-Methyl Ether (TAME)	50	0.00	51.38	103	75-120	68-128	
Ethanol	50	00.0	490.8	98	56-140	42-154	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order: 16-05-1326 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- Χ % Recovery and/or RPD out-of-range. Ζ
 - Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

CHAIN OF CUSTODY FORM

Stantec

25864-F-Business Center Dr., Redlands, CA 92374 (909)335-6116, Fax (909) 335-6120

16-05-1326

Vote: By relinquishing samples, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

WORK ORDER NUMBER: 16-05- 290 596

Calscience

SAMPLE RECEIPT CHECKLIST

COOLER	/ OF	
	101	

		SAMPLE RECEIPT CHECKLIST	COOLEROI
CLIENT:	Stantec		DATE: 05 / 18 / 201

TEMPERATURE: (Criteria: 0.0°C − 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF):							
☐ Sample(s) received at ambient temperature; placed on ice for transp				600			
Ambient Temperature: ☐ Air ☐ Filter		Checke	ed by:	659			
CUSTODY SEAL:				1.50			
	Not Present □ N/A		ed by: _	112			
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐	Z Not Present □ N/A	Checke	ed by: _	6)9			
SAMPLE CONDITION:		Yes	No	N/A			
Chain-of-Custody (COC) document(s) received with samples		🏻					
COC document(s) received complete		📈					
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of conta							
☐ No analysis requested ☐ Not relinquished ☐ No relinquished		ne					
Sampler's name indicated on COC							
Sample container label(s) consistent with COC							
Sample container(s) intact and in good condition							
Proper containers for analyses requested		🗹					
Sufficient volume/mass for analyses requested							
Samples received within holding time							
Aqueous samples for certain analyses received within 15-minute ho				ر			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfide ☐ Dissolved O:		🗖		£ (
Proper preservation chemical(s) noted on COC and/or sample contain				Ø			
Unpreserved aqueous sample(s) received for certain analyses							
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals				,			
Container(s) for certain analysis free of headspace		🗖		Ø			
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved							
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydr				,			
Tedlar™ bag(s) free of condensation	,	🗆		Æ			
CONTAINER TYPE:	(Trip Blank Lot Num)			
Aqueous: \Box VOA \Box VOAh \Box VOAna ₂ \Box 100PJ \Box 100PJna ₂ \Box 11							
☐ 125PBznna ☐ 250AGB ☐ 250CGB ☐ 250CGBs ☐ 250PB ☐ 25							
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □							
Solid: ☐ 4ozCGJ Ø 8ozCGJ ☐ 16ozCGJ Ø Sleeve () ☐ EnC	ores [®] () ☐ TerraCore	s® ()					
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ (Other Matrix ()	: 🛮	□_				
0 - Class 4 - 16	or D - Diagtic and 7 - Ziploc/F	Rasaalahla F	Rad	à —			
Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ =	$Na_2S_2O_3$, p = H_3PO_4 , Labe	eled/Check	ed by: _	911			
$\mathbf{s} = H_2SO_4$, $\mathbf{u} = \text{ultra-pure}$, $\mathbf{znna} = \text{Zn}(CH_3CO_2)_2 + \text{NaOH}$		Review	ed by: _	948			

Calscience

Supplemental Report 1

Additional requested analyses are reported as a stand-alone report.

WORK ORDER NUMBER: 16-05-1326

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Stantec

Client Project Name: 185803664

Attention: Jim DeWoody

25864-F Business Center Drive Redlands, CA 92374-4515

Kothleen M. Burney Fox

Approved for release on 06/07/2016 by:

Carla Hollowell Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: 185803664 Work Order Number: 16-05-1326

Work Ora	10 00 1020	
1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data.	5 5
4	Quality Control Sample Data.4.1 MS/MSD.4.2 LCS/LCSD.	7 7 9
5	Glossary of Terms and Qualifiers	11
6	Chain-of-Custody/Sample Receipt Form	12

Work Order Narrative

Work Order: 16-05-1326 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 05/18/16. They were assigned to Work Order 16-05-1326.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

 Client:
 Stantec
 Work Order:
 16-05-1326

 25864-F Business Center Drive
 Project Name:
 185803664

Redlands, CA 92374-4515 PO Number:

Date/Time 05/18/16 15:40

Received:

Number of 14

Containers:

Attn: Jim DeWoody

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SV-13-5	16-05-1326-5	05/17/16 10:33	1	Solid
SV-13-15	16-05-1326-6	05/17/16 10:47	1	Solid

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: 185803664 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-13-5	16-05-1326-5-A	05/17/16 10:33	Solid	GC 45	05/31/16	06/01/16 01:34	160531B09
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
TPH as Motor Oil		ND	:	25	1.00		
Surrogate		Rec. (%)	!	Control Limits	<u>Qualifiers</u>		
n-Octacosane		120	(61-145			

SV-13-15	16-05-1326-6-A	05/17/16 10:47	Solid	GC 45	05/31/16	06/01/16 01:51	160531B09
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
TPH as Motor Oil		ND	2	25	1.00		
_							
<u>Surrogate</u>		Rec. (%)	<u>(</u>	Control Limits	<u>Qualifiers</u>		
n-Octacosane		107	6	61-145			

Method Blank	099-15-420-1819	N/A	Solid	GC 45	05/31/16	05/31/16 19:33	160531B09
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qu	alifiers
TPH as Motor Oil		ND	25	5	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		97	6′	1-145			

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: 185803664 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-13-5	16-05-1326-5-A	05/17/16 10:33	Solid	GC 45	05/31/16	06/01/16 01:34	160531B08
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH as Diesel		ND		4.9	1.00		
Surrogate		Rec. (%)		Control Limits	Qualifiers		
n-Octacosane		120		61-145			
SV-13-15	16-05-1326-6-A	05/17/16	Solid	GC 45	05/31/16	06/01/16	160531B08

SV-13-15	16-05-1326-6-A	05/17/16 10:47	Solid	GC 45	05/31/16	06/01/16 01:51	160531B08
<u>Parameter</u>		Result		<u>RL</u>	DF	Qu	alifiers
TPH as Diesel		ND		5.0	1.00		
Surrogate		Rec. (%)		Control Limits	<u>Qualifiers</u>		
n-Octacosane		107		61-145			

Method Blank	099-15-422-2461	N/A	Solid	GC 45	05/31/16	05/31/16 19:33	160531B08
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
TPH as Diesel		ND	5.	0	1.00		
<u>Surrogate</u>		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		97	6′	1-145			

Quality Control - Spike/Spike Duplicate

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

Project: 185803664 Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
16-05-1623-12	Sample		Solid	GC	45	05/31/16	06/01/16	09:44	160531S09	
16-05-1623-12	Matrix Spike		Solid	GC	45	05/31/16	05/31/16	20:56	160531S09	
16-05-1623-12	Matrix Spike Du	uplicate	Solid	GC	45	05/31/16	05/31/16	21:12	160531S09	
Parameter	Sample S Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	3690	400.0	1231	0	1320	0	64-130	7	0-15	3

Quality Control - Spike/Spike Duplicate

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

Project: 185803664 Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instru	ument	Date Prepared	Date Analyz	zed	MS/MSD Bat	ch Number
16-05-1623-12	Sample	Solid	GC 4	5	05/31/16	06/01/16 09	:44	160531S08	
16-05-1623-12	Matrix Spike	Solid	GC 4	5	05/31/16	05/31/16 20	:22	160531S08	
16-05-1623-12	Matrix Spike Dupli	cate Solid	GC 4	5	05/31/16	05/31/16 20	:39	160531S08	
Parameter	Sample Spi Conc. Add		MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL F	RPD	RPD CL	Qualifiers
TPH as Diesel	1273 400	0.0 1172	0	1030	0	64-130 1	3	0-15	3

Quality Control - LCS

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

Project: 185803664 Page 1 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-420-1819	LCS	Solid	GC 45	05/31/16	05/31/16 20:05	160531B09
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Motor Oil		400.0	395.8	99	75-12	3

Quality Control - LCS

 Stantec
 Date Received:
 05/18/16

 25864-F Business Center Drive
 Work Order:
 16-05-1326

 Redlands, CA 92374-4515
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

Project: 185803664 Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-422-2461	LCS	Solid	GC 45	05/31/16	05/31/16 19:49	160531B08
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	418.9	105	75-12	3

Glossary of Terms and Qualifiers

Work Order: 16-05-1326 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without furthe clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Ε	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

CHAIN OF CUSTODY FORM

Stantec

25864-F-Business Center Dr., Redlands, CA 92374 (909)335-6116, Fax (909) 335-6120

16-05-1326

Page-

Client Name/Address:		Project/PO Number:	ıber:		Analysi	Analysis Required	
Stantec 25864-F Business Center Drive Redlands, CA 92374		185803604	マ	000			
Project Manager: Jim Del Joed	3	Phone Number:909-335-6116	09-335-6116	28			
Email Address Janues. Del boch Stanter .com	2. Stantec.co	(a)C		8			
Sampler: Ryan McDane	مراهر	Fax Number:909-335-61	.335-6120	00			
Sample Description		# of Sampling Sampling Cont, Date Time	Sampling Preservatives Time				Special Instructions
5-11-75	S Calass	1 5-17-16 0913	0913 ICE	×			
21-11-15	Sleeve		0927	X			
5-71-NS	(1) acs		0955	X			
51-71-15	Aletate		1009	X	-		
SN-13-5	Ship		1033	*			
51-13-15	Lings		1047	×			
2-1-3	Jan.		1200	X			
SI-17-15	Liner		1210	X			
S-H-S	mg +		1238	X			
S1-H-15 01	Liner		1250	X			
2-91-18	Can		1307 1000	×			
21-11-15) Line		13%	×			
13 58-15-5	J. K.	> -	1385	×			
MRelinquished & N-15-15	aminus >		STAIL REPERIVED BY: V	X	Date/Time:	Turn Around Time:	nd Time:
				•		RUSH	72 hours
Relinquished By:	Date/Time		Received By:		Date/Tim:	Sameday	5 days
7 Migh	S/18/10	ohSI o	Runna	112 n	2/18/16 15:40	24 hours 48 hours	Page
Relinquished By:	Date/Time	Je	Received in Lab By:	o By:	Date/ Time;	Sample Integrity: (Check)	eck)
			-		-		כם

Vote: By relinquishing samples, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

WORK ORDER NUMBER: 16-05- 13-01-14-6

Calscience

SAMPLE RECEIPT CHECKLIST

COOLER_		OF .	
	10	, <u> </u>	

client: Stantec	DATE: 05	118	/ 2016
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF):		□ Sam	ıple
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sample ☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter		ked by: _	659
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ N/A Sample(s) □ Present and Intact □ Present but Not Intact □ N/A		ked by: _ ked by: _	
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers	Yes 	No	N/A
□ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time			
Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses		<u> </u>	A A
□ Volatile Organics □ Total Metals □ Dissolved Metals Container(s) for certain analysis free of headspace □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500)			Ø
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach) Tedlar™ bag(s) free of condensation (Trin Blank Let N			/d
CONTAINER TYPE: Aqueous: □VOA □VOAh □VOAna₂ □100PJ □100PJna₂ □125AGB □125AGBh □ □125PBznna □250AGB □250CGB □250CGBs □250PB □250PBn □500AGB □50 □500PB □1AGB □1AGBna₂ □1AGBs □1PB □1PBna □ □ □ □ □ □ Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve (□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	125AGBp	125PB 0AGJs	
Container: $A = Amber$, $B = Bottle$, $C = Clear$, $E = Envelope$, $G = Glass$, $J = Jar$, $P = Plastic$, and $Z = Ziple$. Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$, L	abeled/Chec	ked by: _	619

 $s = H_2SO_4$, u = ultra-pure, $znna = Zn(CH_3CO_2)_2 + NaOH$

Reviewed by: _

1

From: Dewoody, James [mailto:James.Dewoody@stantec.com]

Sent: Tuesday, May 31, 2016 12:28 PM

To: Kathleen Burney

Cc: McDaniel, Ryan; Carla Hollowell

Subject: RE: 185803664 / ECI 16-05-1326

Hey Kathleen or Carla,

Could you run samples 16-05-1326-5 and 16-05-1326-6 for TPHd and TPHo by 8015B on a normal turn-around time?

Thanks,

Jim Dewoody

Senior Scientist Stantec

25864-F Business Center Drive Redlands CA 92374-4515

Phone: (909) 255-8212 Cell: (951) 403-4623

James.Dewoody@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Kathleen Burney [mailto:KathleenBurney@eurofinsUS.com]

Sent: Wednesday, May 25, 2016 3:34 PM

To: Dewoody, James

Cc: McDaniel, Ryan; Carla Hollowell Subject: 185803664 / ECI 16-05-1326

Analytical report attached.

Please let me know if you need anything else. Thank you!

Kathy Burney
Project Manager Assistant
on behalf of

Carla Lee Hollowell Environmental Project Manager

7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 1892

Calscience

WORK ORDER NUMBER: 16-06-1879

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Stantec

Client Project Name: 185803664

Attention: Jim DeWoody

25864-F Business Center Drive Redlands, CA 92374-4515

Hathken M. burney Fox

Approved for release on 07/06/2016 by:

Carla Hollowell Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: 185803664 Work Order Number: 16-06-1879

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) TPH Motor Oil (Aqueous). 4.2 EPA 8015B (M) TPH Diesel (Aqueous). 4.3 EPA 8015B (M) TPH Gasoline (Aqueous). 4.4 EPA 8260B Volatile Organics + Oxygenates (Aqueous).	6 6 7 8 9
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.5.2 LCS/LCSD.	21 21 24
6	Glossary of Terms and Qualifiers	28
7	Chain-of-Custody/Sample Receipt Form	29

Work Order Narrative

Work Order: 16-06-1879 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/27/16. They were assigned to Work Order 16-06-1879.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

 Client:
 Stantec
 Work Order:
 16-06-1879

 25864-F Business Center Drive
 Project Name:
 185803664

Redlands, CA 92374-4515 PO Number:

Date/Time 06/27/16 12:25

Received:

Number of 18

Containers:

Attn: Jim DeWoody

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
HP-1	16-06-1879-1	06/27/16 10:20	6	Aqueous
HP-2	16-06-1879-2	06/27/16 09:10	6	Aqueous
HP-3	16-06-1879-3	06/27/16 11:37	6	Aqueous

Detections Summary

Client: Stantec

Work Order:

16-06-1879

25864-F Business Center Drive Redlands, CA 92374-4515 Project Name: Received:

185803664 06/27/16

Attn: Jim DeWoody

Page 1 of 1

Client SampleID							
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>	
HP-1 (16-06-1879-1)							
TPH as Diesel	53	HD	50	ug/L	EPA 8015B (M)	EPA 3510C	
Tetrachloroethene	70		1.0	ug/L	EPA 8260B	EPA 5030C	
Trichloroethene	16		1.0	ug/L	EPA 8260B	EPA 5030C	
HP-2 (16-06-1879-2)							
TPH as Diesel	65	HD	50	ug/L	EPA 8015B (M)	EPA 3510C	
Tetrachloroethene	3.7		1.0	ug/L	EPA 8260B	EPA 5030C	
Trichloroethene	1.5		1.0	ug/L	EPA 8260B	EPA 5030C	
HP-3 (16-06-1879-3)							
TPH as Motor Oil	1100	HD	250	ug/L	EPA 8015B (M)	EPA 3510C	
TPH as Diesel	310	HD	50	ug/L	EPA 8015B (M)	EPA 3510C	
Chloroform	1.8		1.0	ug/L	EPA 8260B	EPA 5030C	
1,1-Dichloroethane	16		1.0	ug/L	EPA 8260B	EPA 5030C	
1,2-Dichloroethane	1.7		0.50	ug/L	EPA 8260B	EPA 5030C	
1,1-Dichloroethene	100		1.0	ug/L	EPA 8260B	EPA 5030C	
Tetrachloroethene	5.8		1.0	ug/L	EPA 8260B	EPA 5030C	
1,1,2-Trichloroethane	1.7		1.0	ug/L	EPA 8260B	EPA 5030C	
Trichloroethene	12		1.0	ug/L	EPA 8260B	EPA 5030C	

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

 Project: 185803664
 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HP-1	16-06-1879-1-F	06/27/16 10:20	Aqueous	GC 48	06/29/16	06/30/16 00:58	160629B14
<u>Parameter</u>		Result	RL	.	DF	Qua	alifiers
TPH as Motor Oil		ND	25	0	1.00		
<u>Surrogate</u>		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		76	68	-140			
HP-2	16-06-1879-2-F	06/27/16 09:10	Aqueous	GC 48	06/29/16	06/30/16 01:13	160629B14
<u>Parameter</u>		Result	RL	-	DF	Qua	alifiers
TPH as Motor Oil		ND	25	0	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	Qualifiers		
n-Octacosane		79	68	-140			

HP-3	16-06-1879-3-F	06/27/16 11:37	Aqueous	GC 48	06/29/16	06/30/16 01:29	160629B14
Parameter		Result	<u>RL</u>		DF	Qua	<u>llifiers</u>
TPH as Motor Oil		1100	250)	1.00	HD	
<u>Surrogate</u>		Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane		83	68-	140			

	Method Blank	099-15-278-1230	N/A	Aqueous GC 48	06/29/16	06/29/16 160629B14 21:53
]	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
•	TPH as Motor Oil		ND	250	1.00	
<u>;</u>	Surrogate		Rec. (%)	Control Limits	Qualifiers	
-	n-Octacosane		95	68-140		

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: 185803664 Page 1 of 1

Project: 185803664						Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HP-1	16-06-1879-1-F	06/27/16 10:20	Aqueous	GC 48	06/29/16	06/30/16 00:58	160629B13
Parameter		Result	RL	=	<u>DF</u>	Qua	alifiers
TPH as Diesel		53	50		1.00	HD	
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		76	68	-140			
HP-2	16-06-1879-2-F	06/27/16 09:10	Aqueous	GC 48	06/29/16	06/30/16 01:13	160629B13
Parameter	·	Result	RL	.	<u>DF</u>	Qua	<u>alifiers</u>
TPH as Diesel		65	50		1.00	HD	
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		79	68	-140			
HP-3	16-06-1879-3-F	06/27/16 11:37	Aqueous	GC 48	06/29/16	06/30/16 01:29	160629B13
Parameter		Result	RL	.	<u>DF</u>	Qua	alifiers
TPH as Diesel		310	50		1.00	HD	
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		83	68	-140			

Method Blank	099-15-304-1449	N/A	Aqueous	GC 48	06/29/16	06/29/16 21:53	160629B13
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qu	alifiers
TPH as Diesel		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane		95	68-	140			

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: 185803664 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HP-1	16-06-1879-1-E	06/27/16 10:20	Aqueous	GC 1	06/28/16	06/29/16 09:58	160628L050
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
TPH as Gasoline		ND	100	0	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		61	38-	-134			
HP-2	16-06-1879-2-E	06/27/16 09:10	Aqueous	GC 1	06/28/16	06/29/16 10:34	160628L050
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
TPH as Gasoline		ND	100	0	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		57	38-	-134			

HP-3	16-06-1879-3-E	06/27/16 11:37	Aqueous GC 1	06/28/16	06/29/16 11:10	160628L050
Parameter		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH as Gasoline		ND	100	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		60	38-134			

Method Blank	099-15-704-1466	N/A	Aqueous GC 1	06/28/16	06/29/16 00:28	160628L050
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
TPH as Gasoline		ND	100	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		59	38-134			

Stantec Date Received: 06/27/16
25864-F Business Center Drive Work Order: 16-06-1879
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: 185803664 Page 1 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HP-1	16-06-1879-1-A	06/27/16 10:20	Aqueous	GC/MS V V	06/29/16	06/29/16 13:15	160629L009
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: 185803664
 Page 2 of 12

-,				9
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	70	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	16	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.00	
Ethanol	ND	100	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	95	80-120		

Stantec	Date Received:	06/27/16
25864-F Business Center Drive	Work Order:	16-06-1879
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 185803664		Page 3 of 12

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	103	78-126	
1,2-Dichloroethane-d4	113	75-135	
Toluene-d8	100	80-120	

Stantec Date Received: 06/27/16
25864-F Business Center Drive Work Order: 16-06-1879
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: 185803664 Page 4 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HP-2	16-06-1879-2-A	06/27/16 09:10	Aqueous	Aqueous GC/MS V V		06/29/16 13:43	160629L009
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	60	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	60	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	60	1.00		
1,1-Dichloroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0		1.00		
1,3-Dichloropropane							
		ND	1.0)	1.00		

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: 185803664
 Page 5 of 12

110,000.100000004				1 age 9 01 12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	3.7	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	1.5	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.00	
Ethanol	ND	100	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	94	80-120		

Stantec	Date Received:	06/27/16
25864-F Business Center Drive	Work Order:	16-06-1879
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 185803664		Page 6 of 12

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	101	78-126	
1,2-Dichloroethane-d4	111	75-135	
Toluene-d8	100	80-120	

Stantec Date Received: 06/27/16
25864-F Business Center Drive Work Order: 16-06-1879
Redlands, CA 92374-4515 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: 185803664 Page 7 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HP-3	16-06-1879-3-A	06/27/16 11:37	Aqueous	GC/MS V V	06/29/16	06/29/16 14:11	160629L009
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		1.8	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		16	1.0)	1.00		
1,2-Dichloroethane		1.7	0.5	50	1.00		
1,1-Dichloroethene		100	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Tert-Amyl-Methyl Ether (TAME)

Vinyl Acetate

Vinyl Chloride

p/m-Xylene

o-Xylene

Ethanol

Surrogate

Analytical Report

Stantec Date Received: 06/27/16 Work Order: 16-06-1879 25864-F Business Center Drive Redlands, CA 92374-4515 Preparation: **EPA 5030C** Method: **EPA 8260B** Units: ug/L Project: 185803664 Page 8 of 12 Result <u>RL</u> <u>DF</u> Qualifiers <u>Parameter</u> ND 1.0 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 0.50 1.00 t-1,3-Dichloropropene ND 0.50 1.00 Ethylbenzene ND 1.0 1.00 2-Hexanone ND 10 1.00 Isopropylbenzene ND 1.00 1.0 p-Isopropyltoluene ND 1.0 1.00 Methylene Chloride ND 10 1.00 4-Methyl-2-Pentanone ND 10 1.00 Naphthalene ND 10 1.00 ND n-Propylbenzene 1.0 1.00 Styrene ND 1.0 1.00 1,1,1,2-Tetrachloroethane ND 1.0 1.00 1,1,2,2-Tetrachloroethane ND 1.0 1.00 Tetrachloroethene 1.0 1.00 5.8 Toluene ND 1.0 1.00 1,2,3-Trichlorobenzene ND 1.0 1.00 1,2,4-Trichlorobenzene ND 1.0 1.00 1,1,1-Trichloroethane ND 1.0 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 10 1.00 1,1,2-Trichloroethane 1.7 1.0 1.00 Trichloroethene 12 1.0 1.00 ND Trichlorofluoromethane 10 1.00

ND

93

Rec. (%)

5.0

1.0

1.0

10

0.50

1.0

1.0

1.0

10

2.0

2.0

2.0

100

80-120

Control Limits

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

Stantec	Date Received:	06/27/16
25864-F Business Center Drive	Work Order:	16-06-1879
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 185803664		Page 9 of 12

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	105	78-126	
1,2-Dichloroethane-d4	115	75-135	
Toluene-d8	100	80-120	

Project: 185803664

Analytical Report

Stantec Date Received: 06/27/16
25864-F Business Center Drive Work Order: 16-06-1879
Redlands, CA 92374-4515 Preparation: EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B Units: ug/L

Page 10 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-001-20742	N/A	Aqueous	GC/MS V V	06/29/16	06/29/16 12:19	160629L009
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	60	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	60	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0		1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5		1.00		
1,1-Dichloroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0		1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0		1.00		

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: 185803664
 Page 11 of 12

110,000.10000004				1 age 11 01 12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.00	
Ethanol	ND	100	1.00	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	94	80-120		

Stantec	Date Received:	06/27/16
25864-F Business Center Drive	Work Order:	16-06-1879
Redlands, CA 92374-4515	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: 185803664		Page 12 of 12

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	104	78-126	
1,2-Dichloroethane-d4	112	75-135	
Toluene-d8	98	80-120	

Quality Control - Spike/Spike Duplicate

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

Project: 185803664 Page 1 of 3

Quality Control Sample ID	Type		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
16-06-2044-2	Sample		Aqueous	s GC	C 48	06/29/16	06/29/16	23:56	160629S13	
16-06-2044-2	Matrix Spike		Aqueous	s GC	C 48	06/29/16	06/29/16	23:10	160629S13	
16-06-2044-2	Matrix Spike	Duplicate	Aqueous	s GC	C 48	06/29/16	06/29/16	23:26	160629S13	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	2000	1498	75	1712	86	55-133	13	0-30	

Quality Control - Spike/Spike Duplicate

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

Project: 185803664 Page 2 of 3

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
16-06-1825-1	Sample		Aqueou	ıs G	C 1	06/28/16	06/29/16	01:04	160628S027	,
16-06-1825-1	Matrix Spike		Aqueou	ıs G	C 1	06/28/16	06/29/16	01:40	160628S027	•
16-06-1825-1	Matrix Spike	Duplicate	Aqueou	ıs G	C 1	06/28/16	06/29/16	02:15	160628S027	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	ND	2000	2115	106	2033	102	68-122	4	0-18	

Quality Control - Spike/Spike Duplicate

Stantec Date Received: 06/27/16
25864-F Business Center Drive Work Order: 16-06-1879
Redlands, CA 92374-4515 Preparation: EPA 5030C
Method: EPA 8260B

Project: 185803664 Page 3 of 3

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	d Date Ana	lyzed	MS/MSD Bat	ch Number
16-06-2008-1	Sample		Aqueou	Aqueous		06/29/16	06/29/16	16:03	160629S012	
16-06-2008-1	Matrix Spike	Matrix Spike		Aqueous G		06/29/16	06/29/16 16:31		160629S012	
16-06-2008-1	Matrix Spike	Duplicate	Aqueou	s	GC/MS V V	06/29/16	06/29/16	16:58	160629S012	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Re	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	50.00	47.34	95	45.35	91	74-122	4	0-21	
Carbon Tetrachloride	ND	50.00	53.97	108	52.72	105	60-144	2	0-21	
Chlorobenzene	ND	50.00	48.20	96	46.56	93	73-120	3	0-22	
1,2-Dibromoethane	ND	50.00	51.46	103	49.96	100	80-122	3	0-20	
1,2-Dichlorobenzene	ND	50.00	48.35	97	46.66	93	70-120	4	0-26	
1,2-Dichloroethane	ND	50.00	52.57	105	49.15	98	64-142	7	0-20	
1,1-Dichloroethene	ND	50.00	50.44	101	49.16	98	52-136	3	0-21	
Ethylbenzene	ND	50.00	49.51	99	48.86	98	77-125	1	0-24	
Toluene	ND	50.00	48.72	97	46.79	94	72-126	4	0-23	
Trichloroethene	2.574	50.00	53.34	102	48.45	92	74-128	10	0-22	
Vinyl Chloride	ND	50.00	47.64	95	48.88	98	67-133	3	0-20	
p/m-Xylene	ND	100.0	103.4	103	100.6	101	63-129	3	0-25	
o-Xylene	ND	50.00	52.65	105	51.21	102	62-128	3	0-24	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	47.30	95	48.41	97	68-134	2	0-21	
Tert-Butyl Alcohol (TBA)	ND	250.0	240.7	96	236.8	95	65-143	2	0-30	
Diisopropyl Ether (DIPE)	ND	50.00	50.01	100	48.35	97	61-139	3	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	47.93	96	47.05	94	64-136	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	46.52	93	45.44	91	67-133	2	0-20	
Ethanol	ND	500.0	487.3	97	430.0	86	34-178	12	0-58	

Quality Control - LCS/LCSD

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 3510C

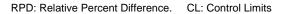
 Method:
 EPA 8015B (M)

Project: 185803664 Page 1 of 4

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-278-1230	LCS	Aq	ueous	GC 48	06/29/16	06/30	0/16 23:55	160629B14	
099-15-278-1230	LCSD	Aq	ueous	GC 48	06/29/16	07/01	1/16 00:11	160629B14	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	2000	1806	90	1701	85	75-117	6	0-13	

Quality Control - LCS/LCSD

 Stantec
 Date Received:
 06/27/16


 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

Project: 185803664 Page 2 of 4

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-304-1449	LCS	Aq	ueous	GC 48	06/29/16	06/29	9/16 22:08	160629B13	
099-15-304-1449	LCSD	Aq	ueous	GC 48	06/29/16	06/29	9/16 22:23	160629B13	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	2000	2275	114	2216	111	75-117	3	0-13	

Quality Control - LCS

 Stantec
 Date Received:
 06/27/16

 25864-F Business Center Drive
 Work Order:
 16-06-1879

 Redlands, CA 92374-4515
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

Project: 185803664 Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-704-1466	LCS	Aqueous	GC 1	06/28/16	06/28/16 23:53	160628L050
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Gasoline		2000	2057	103	78-120	0

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Stantec 25864-F Business Center Drive Redlands, CA 92374-4515 Date Received: Work Order: Preparation: Method: 06/27/16 16-06-1879 EPA 5030C EPA 8260B

Project: 185803664

Page 4 of 4

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
099-14-001-20742	LCS		Aqueous	; (GC/MS V V	06/29/16	06/29/	16 10:47	160629L009	
099-14-001-20742	LCSD		Aqueous	; (GC/MS V V	06/29/16	06/29/	16 11:24	160629L009	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.		%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	50.00	48.98	98	48.11	96	80-120	73-127	2	0-20	
Carbon Tetrachloride	50.00	59.99	120	60.98	122	67-139	55-151	2	0-20	
Chlorobenzene	50.00	49.99	100	50.58	101	78-120	71-127	1	0-20	
1,2-Dibromoethane	50.00	52.21	104	53.46	107	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	50.00	51.41	103	51.55	103	63-129	52-140	0	0-20	
1,2-Dichloroethane	50.00	53.47	107	52.29	105	70-130	60-140	2	0-20	
1,1-Dichloroethene	50.00	40.57	81	41.33	83	66-126	56-136	2	0-20	
Ethylbenzene	50.00	52.67	105	53.29	107	80-123	73-130	1	0-20	
Toluene	50.00	51.47	103	51.04	102	80-120	73-127	1	0-20	
Trichloroethene	50.00	49.75	99	48.42	97	80-122	73-129	3	0-20	
Vinyl Chloride	50.00	48.82	98	48.27	97	70-130	60-140	1	0-20	
p/m-Xylene	100.0	109.0	109	110.5	111	75-123	67-131	1	0-20	
o-Xylene	50.00	55.53	111	56.27	113	74-122	66-130	1	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	51.90	104	53.57	107	69-129	59-139	3	0-20	
Tert-Butyl Alcohol (TBA)	250.0	258.4	103	256.8	103	69-129	59-139	1	0-20	
Diisopropyl Ether (DIPE)	50.00	52.65	105	52.82	106	68-128	58-138	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	51.11	102	52.72	105	63-135	51-147	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	51.47	103	51.26	103	67-133	56-144	0	0-20	
Ethanol	500.0	288.4	58	290.0	58	42-168	21-189	1	0-20	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order: 16-06-1879 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without furthe clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

Χ % Recovery and/or RPD out-of-range. Ζ

Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

16-06-1879

Stantec

	-			Suc										,			Page	29 of 3
AND THE PROPERTY OF THE PROPER		·	÷	Special Instructions											Turn Around Time:	72 hours	5 days	(Check)
Analysis Reauired				-										,	Turn At	RUSH	Sameday 24 hours 48 hours	Sample Integrity: (Check) intact or
Analysis									-						7,00	1772		
															Date/Time:	0/22/10	Date/Tim:	Date/ Time;
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	728 241/9/	5 5 H	19T 20V	×	×	X					2	0		62			Ву:
	す			Preservatives	151/1ce		>								ed By:	1/27	d By:	Received in Lab By:
lumber:	18580300	er:909-335-6	09-335-6120	Sampling Sampling Date Time	1620	0910	137								Receive	2	Received By:	Rec
Project/PO Number:	183	Phone Number:909-335-6116	Fax Number:909-335-61	# of Samplin Cont. Date	2	3	ラ ラ									(225		
<u>a</u>				er			,)								Date/Time	127-141	Date/Time	Date/Time
		Joseph		Sample	i l	(JO)	GW) (The state of the s
Client Name/Address:	Stantec 25864-F Business Center Drive Redlands, CA 92374	Project Manager: Jim Del Joocky Email Address: Fames Di Janoh & Chambar	Sampler: Blan Act and	Sample Description	HP-1	HP-2	HP-3								Relinguished By:		Relinquished By:	Relinquished By:

Vote: By relinquishing samples, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

Calscience

WORK ORDER NUMBER: 16-06- 1879

SAMPLE RECEIPT CHECKLIST COOLER	OF
CLIENT: Stantec DATE: 06/27	/ 2016
TEMPERATURE: (Criteria: 0.0°C − 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF): 4 → °C (w/ CF): 4 → °C; □ Blank Sam □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling □ Sample(s) received at ambient temperature; placed on ice for transport by courier	
Ambient Temperature: Air Filter Checked by:	836
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ Not Present □ N/A Checked by: □ Sample(s) □ Present and Intact □ Present but Not Intact □ Not Present □ N/A Checked by: □	836 836
SAMPLE CONDITION: Yes No	N/A
Chain-of-Custody (COC) document(s) received with samples	
COC document(s) received complete	
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers	
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time	
Sampler's name indicated on COC	
Sample container label(s) consistent with COC	o
Sample container(s) intact and in good condition	
Proper containers for analyses requested	
Sufficient volume/mass for analyses requested	
Samples received within holding time	
Aqueous samples for certain analyses received within 15-minute holding time	
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen □ □	
Proper preservation chemical(s) noted on COC and/or sample container	o l
Unpreserved aqueous sample(s) received for certain analyses	
□ Volatile Organics □ Total Metals □ Dissolved Metals	
Container(s) for certain analysis free of headspace	
✓ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500)	
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)	1
Tedlar™ bag(s) free of condensation	Ø
CONTAINER TYPE: (Trip Blank Lot Number:	,
Aqueous: □ VOA □ VOAh □ VOAna2 □ 100PJ □ 100PJna2 □ 125AGB □ 125AGBh □ 125AGBp □ 125PB □ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 500AGJ □ 500AGJs □ 500PB □ 1AGB □ 1AGBna2 □ 1AGBs □ 1PB □ 1PBna □ □ □ □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores® () □ TerraCores® () □ □ Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □ □	
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag	82/
Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , Labeled/Checked by:	1403

Calscience

WORK ORDER NUMBER: 16-06- 21/879

SAMPLE ANOMALY REPORT

DATE: 06 / <u>27</u> / 2016

SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
☐ Sample(s) received but NOT LISTED on COC	
☐ Holding time expired (list client or ECI sample ID and analysis)	
Insufficient sample amount for requested analysis (list analysis)	(3) Received approx. 400 m/ in
☐ Improper container(s) used (list analysis)	1/1ter amber glass container
☐ Improper preservative used (list analysis)	for IPH-D and Mo.
☐ No preservative noted on COC or label (list analysis and notify lab)	
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	
☐ Number of container(s)	
☐ Requested analysis	
☐ Sample container(s) compromised (comment)	
☐ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
□ Very low in volume	W
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	:
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total Sample ID Container ID Number** Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysis
12 A+0E 5	
3 C, E 5	
Comments:	ç.
	Reported by: 814 Reviewed by: Wy
** Record the total number of containers (i.e., vials or bottles) for the affected sample.	Reviewed by:

Mr. Jim Dewoody Stantec - Redlands 25864-F Business Center Dr. Redlands, CA 92374

H&P Project: ST040816-SB2

Client Project: 185803664 / 1515 W. 178th

Dear Mr. Jim Dewoody:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 08-Apr-16 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- · Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- · Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-2	E604033-01	Vapor	08-Apr-16	08-Apr-16
SV-1	E604033-02	Vapor	08-Apr-16	08-Apr-16
SV-4	E604033-03	Vapor	08-Apr-16	08-Apr-16
SV-3	E604033-04	Vapor	08-Apr-16	08-Apr-16
SV-3 REP	E604033-05	Vapor	08-Apr-16	08-Apr-16
SV-5	E604033-06	Vapor	08-Apr-16	08-Apr-16
SV-6	E604033-07	Vapor	08-Apr-16	08-Apr-16
SV-7	E604033-08	Vapor	08-Apr-16	08-Apr-16
SV-8	E604033-09	Vapor	08-Apr-16	08-Apr-16
SV-9	E604033-10	Vapor	08-Apr-16	08-Apr-16
SV-10	E604033-11	Vapor	08-Apr-16	08-Apr-16

Trichloroethene

Tetrachloroethene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands 25864-F Business Center Dr.	Project Number: 18	T040816-SB2 35803664 / 1515 W. 1	78th	=	Reported:			
Redlands, CA 92374	Project Manager: M	15-Apr-16 07:45						
	DETECTIONS SU	JMMARY						
Sample ID: SV-2	Laboratory ID:	E604033-01						
		Reporting						
Analyte	Result		Units	Method	Notes			
1,1-Dichloroethene	0.62	0.40	ug/l	H&P 8260SV				
Methylene chloride (Dichloromethane)	0.45	0.40	ug/l	H&P 8260SV				
Tetrachloroethene	0.51	0.08	ug/l	H&P 8260SV				
Sample ID: SV-1	Laboratory ID:	E604033-02						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Tetrachloroethene	0.41	0.08	ug/l	H&P 8260SV				
Sample ID: SV-4	Laboratory ID:	E604033-03						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Methylene chloride (Dichloromethane)	1.0	0.40	ug/l	H&P 8260SV				
Tetrachloroethene	0.24	0.08	ug/l	H&P 8260SV				
Sample ID: SV-3	Laboratory ID:	E604033-04						
		Reporting						
Analyte	Result		Units	Method	Notes			
Tetrachloroethene	0.31	0.08	ug/l	H&P 8260SV				
Sample ID: SV-3 REP	Laboratory ID:	E604033-05						
		Reporting						
Analyte	Result		Units	Method	Notes			
Tetrachloroethene	0.26	0.08	ug/l	H&P 8260SV				
Sample ID: SV-5	Laboratory ID:	E604033-06						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Benzene	0.09	0.08	ug/l	H&P 8260SV				
Tetrachloroethene	1.0	0.08	ug/l	H&P 8260SV				
Sample ID: SV-6	Laboratory ID:	E604033-07						
		Reporting						
Analyte	Result		Units	Method	Notes			
Benzene	0.10		ug/l	H&P 8260SV				

0.11

0.99

0.08

0.08

ug/l

ug/l

H&P 8260SV

H&P 8260SV

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands 25864-F Business Center Dr. Redlands, CA 92374	Project Number: 1858036	Project: ST040816-SB2 Project Number: 185803664 / 1515 W. 178th Project Manager: Mr. Jim Dewoody							
Sample ID: SV-7	Laboratory ID: E604								
r · · · · · ·	,	Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Benzene	0.10	0.08	ug/l	H&P 8260SV					
Trichloroethene	0.10	0.08	ug/l	H&P 8260SV					
Tetrachloroethene	46	0.08	ug/l	H&P 8260SV					
Sample ID: SV-8	Laboratory ID: E60 4	1033-09							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Benzene	0.09	0.08	ug/l	H&P 8260SV					
Sample ID: SV-9	Laboratory ID: E60 4	1033-10							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Benzene	0.10	0.08	ug/l	H&P 8260SV					
Sample ID: SV-10	Laboratory ID: E60 4	1033-11							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Benzene	0.09	0.08	ug/l	H&P 8260SV					
Tetrachloroethene	0.11	0.08	ug/l	H&P 8260SV					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2 (E604033-01) Vapor Sampled: 08-Apr-16	Received: 08-	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	0.62	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.45	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	0.51	0.40	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.40	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
m,p Ayrene	שויו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST040816-SB2

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W. 178th Project Manager: Mr. Jim Dewoody

15-Apr-16 07:45

Reported:

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2 (E604033-01) Vapor Sampled: 08-Apr-16	Received: 08-	Apr-16							
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	75-1	25	"	"	"	"	
Surrogate: Dioromojiuoromeinane Surrogate: 1,2-Dichloroethane-d4		98.0 %	75-1 75-1		,,	,,	"	"	
e e e e e e e e e e e e e e e e e e e		98.0 % 105 %	/5-1 75-1		,,	,,	,,	"	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene		105 % 107 %	75-1 75-1		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E604033-02) Vapor Sampled: 08-Apr-16	Received: 08-A	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene (22 e)	ND	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	,,	"	,,	,,	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	,,	"	,,	"	"	
1,1,2-Trichloroethane	ND	0.40	,,	"	,,	,,	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	,,	"	,,	,,	"	"	
1,3-Dichloropropane	ND	0.40	"	,,	"	,,	"	"	
Tetrachloroethene	0.41	0.40	,,	"	,,	,,	"	"	
Dibromochloromethane	0.41 ND	0.00	"	"	"	,,	"	"	
Chlorobenzene	ND	0.40	,,	"	"	"	"	"	
Ethylbenzene	ND	0.08	"	"	"	,,	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	,,	"	"	"	"	
m,p-Xylene	ND ND	0.40	"	,,	"	,,	"	"	
m,p-Ayrene	טא	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST040816-SB2

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W. 178th Project Manager: Mr. Jim Dewoody Reported: 15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E604033-02) Vapor Sampled: 08-Apr-16	Received: 08-	Apr-16							
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	75-1.	25	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %	75-1.	25	"	"	"	"	
Surrogate: Toluene-d8		105 %	75-1.	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	75-1.	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4 (E604033-03) Vapor Sampled: 08-Apr-1	6 Received: 08-	-Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	1.0	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	0.24	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08		"	"	"	"	"	
Ethylbenzene	ND	0.40		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST040816-SB2

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W. 178th Project Manager: Mr. Jim Dewoody Reported: 15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4 (E604033-03) Vapor Sampled: 08-Apr-10	Received: 08-	Apr-16							
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	75-		"	"	"	"	
Surrogate: Toluene-d8		106 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	75-1		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 (E604033-04) Vapor Sampled: 08-Apr-16	Received: 08-A	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	0.31	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
b1	ND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Her Mobile Geochemstry, Inc.											
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes		
SV-3 (E604033-04) Vapor Sampled: 08-Ap	pr-16 Received: 08-	-Apr-16									
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV			
Styrene	ND	0.40	"	"	"	"	"	"			
Bromoform	ND	0.40	"	"	"	"	"	"			
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"			
n-Propylbenzene	ND	0.40	"	"	"	"	"	"			
Bromobenzene	ND	0.40	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"			
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"			
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"			
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"			
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"			
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"			
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"			
n-Butylbenzene	ND	0.40	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"			
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"			
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"			
Naphthalene	ND	0.08	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"			
Surrogate: Dibromofluoromethane		111 %	75-		"	"	"	"			
Surrogate: 1,2-Dichloroethane-d4		110 %	75-		"	"	"	"			
Surrogate: Toluene-d8		105 %	75-		"	"	"	"			
Surrogate: 4-Bromofluorobenzene		105 %	75-	125	"	"	"	"			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 REP (E604033-05) Vapor Sampled: 08-A _I	or-16 Received	l: 08-Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	0.26	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
,p 213 tolic	טויו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 REP (E604033-05) Vapor	Sampled: 08-Apr-16	Received	: 08-Apr-16							
o-Xylene		ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Styrene		ND	0.40	"	"	"	"	"	"	
Bromoform		ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)		ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	0.40	"	"	"	"	"	"	
n-Propylbenzene		ND	0.40	"	"	"	"	"	"	
Bromobenzene		ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene		ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene		ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
n-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.40	"	"	"	"	"	"	
Naphthalene		ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			105 %	75-		"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			105 %		125	"	"	"	"	
Surrogate: Toluene-d8			105 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene			104 %	75-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5 (E604033-06) Vapor Sampled: 08-Apr-16	Received: 08-A	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.09	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	1.0	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.40	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
			"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

TICE IVIOUNE GEOCHEMISTRY, THE.												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
SV-5 (E604033-06) Vapor Sampled: 08-Apr-1	6 Received: 08	-Apr-16										
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV				
Styrene	ND	0.40	"	"	"	"	"	"				
Bromoform	ND	0.40	"	"	"	"	"	"				
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"				
n-Propylbenzene	ND	0.40	"	"	"	"	"	"				
Bromobenzene	ND	0.40	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"				
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
n-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"				
Naphthalene	ND	0.08	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Surrogate: Dibromofluoromethane		108 %		125	"	"	"	"				
Surrogate: 1,2-Dichloroethane-d4		107 %		125	"	"	"	"				
Surrogate: Toluene-d8		106 %		125	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		107 %	75-	125	"	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6 (E604033-07) Vapor Sampled: 08-Apr-16	Received: 08-A	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.10	0.08	"	"	"	"	"	"	
Trichloroethene	0.10	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	,,	,,	,,	,,	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	,,	,,	"	,,	"	"	
1,1,2-Trichloroethane	ND	0.40	,,	,,	,,	,,	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	,,	,,	,,	,,	"	"	
1,3-Dichloropropane	ND	0.40	,,	,,	"	,,	"	"	
Tetrachloroethene	0.99	0.40	"	,,	"	"	"	"	
Dibromochloromethane	0.99 ND	0.40	,,	"	"	,,	"	"	
Chlorobenzene	ND	0.40	"	,,	"	"	"	"	
Ethylbenzene	ND ND	0.08	,,	"	"	,,	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	"	"	"	"	"	
m,p-Xylene	ND ND	0.40	,,	"	"	,,	"	"	
m,p-Ayrene	ND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

The Proble Geochemistry, the.												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
SV-6 (E604033-07) Vapor Sampled: 08-Apr-	16 Received: 08-	Apr-16										
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV				
Styrene	ND	0.40	"	"	"	"	"	"				
Bromoform	ND	0.40	"	"	"	"	"	"				
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"				
n-Propylbenzene	ND	0.40	"	"	"	"	"	"				
Bromobenzene	ND	0.40	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"				
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
n-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"				
Naphthalene	ND	0.08	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Surrogate: Dibromofluoromethane		108 %	75-12	25	"	"	"	"				
Surrogate: 1,2-Dichloroethane-d4		105 %	75-12	25	"	"	"	"				
Surrogate: Toluene-d8		107 %	75-12	25	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		105 %	75-12	25	"	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-7 (E604033-08) Vapor Sampled: 08-Apr-16	Received: 08-A	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.10	0.08	"	"	"	"	"	"	
Trichloroethene	0.10	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	,,	,,	,,	,,	"	"	
1,1,2-Trichloroethane	ND	0.40	,,	,,	,,	,,	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	,,	,,	"	,,	"	"	
Tetrachloroethene	46	0.40	,,	,,	,,	,,	"	"	
Dibromochloromethane	ND	0.40	,,	"	"	,,	"	"	
Chlorobenzene	ND	0.40	"	,,	"	"	"	"	
Ethylbenzene	ND ND	0.08	,,	"	"	,,	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	"	"	"	"	"	
m,p-Xylene	ND ND	0.40	,,	"	"	,,	"	"	
m,p-Ayrene	ND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-7 (E604033-08) Vapor Sampled: 08-Apr-10	6 Received: 08-	-Apr-16							
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	n n	"	n	
g , Dy , g , d		100.07	75 1	125	"	,,	"	"	
Surrogate: Dibromofluoromethane		108 %	75-1			"			
Surrogate: 1,2-Dichloroethane-d4		106 %	75-1		"		"	"	
Surrogate: Toluene-d8		105 %	75-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	75-1	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-8 (E604033-09) Vapor Sampled: 08-Apr-16	Received: 08-	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.09	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.40	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.40	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40		"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	,,	"	
m,p-Ayiene	ND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Her Mobile Geochemistry, Inc.											
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes		
SV-8 (E604033-09) Vapor Sampled: 08-Ap	pr-16 Received: 08-	-Apr-16									
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV			
Styrene	ND	0.40	"	"	"	"	"	"			
Bromoform	ND	0.40	"	"	"	"	"	"			
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"			
n-Propylbenzene	ND	0.40	"	"	"	"	"	"			
Bromobenzene	ND	0.40	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"			
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"			
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"			
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"			
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"			
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"			
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"			
n-Butylbenzene	ND	0.40	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"			
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"			
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"			
Naphthalene	ND	0.08	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	H .			
Surrogate: Dibromofluoromethane		111 %		125	"	"	"	"			
Surrogate: 1,2-Dichloroethane-d4		109 %		125	"	"	"	"			
Surrogate: Toluene-d8		107 %		125	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		104 %	75-	125	"	"	"	"			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-9 (E604033-10) Vapor Sampled: 08-Apr-16	Received: 08-	Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.10	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
,p 21,10110	שויו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-9 (E604033-10) Vapor Sampled: 08-Apr	r-16 Received: 08-	Apr-16							
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	п	
Surrogate: Dibromofluoromethane		105 %	75-	125	"	"	"	"	
Surrogate: Dioromojiuoromethane Surrogate: 1,2-Dichloroethane-d4		105 % 107 %	75		,,	"	,,	"	
9		107 % 105 %	75		,,	,,	,,		
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene		105 % 107 %	75 75		,,	,,	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-10 (E604033-11) Vapor Sampled: 08-Apr-10	Received: 08-	-Apr-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.09	0.08	"	"	"	"	"	"	
Trichloroethene	ND	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	0.11	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.40	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
			"	"	"	"	"	"	
n,p-Xylene	ND ND	0.40 0.40		"					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-10 (E604033-11) Vapor Sampled: 08-Apr-	16 Received: 08	3-Apr-16							
o-Xylene	ND	0.40	ug/l	0.04	ED60801	08-Apr-16	08-Apr-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	75-		"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	75-		"	"	"	"	
Surrogate: Toluene-d8		104 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	75-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Blank (ED60801-BLK1)				Prepared & Analyze
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	
Dichlorodifluoromethane (F12)	ND	0.40	"	
Chloromethane	ND	0.40	"	
Vinyl chloride	ND	0.04	"	
Bromomethane	ND	0.40	"	
Chloroethane	ND	0.40	"	
Trichlorofluoromethane (F11)	ND	0.40	"	
1,1-Dichloroethene	ND	0.40	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	
trans-1,2-Dichloroethene	ND	0.40	"	
1,1-Dichloroethane	ND	0.40	"	
2,2-Dichloropropane	ND	0.40	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.08	"	
Bromochloromethane	ND	0.40	"	
1,1,1-Trichloroethane	ND	0.40	"	
1,1-Dichloropropene	ND	0.40	"	
Carbon tetrachloride	ND	0.08	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	
Benzene	ND	0.08	"	
Trichloroethene	ND	0.08	"	
1,2-Dichloropropane	ND	0.40	"	
Bromodichloromethane	ND	0.40	"	
Dibromomethane	ND	0.40	"	
cis-1,3-Dichloropropene	ND	0.40	"	
Toluene	ND	0.80	"	
trans-1,3-Dichloropropene	ND	0.40	"	
1,1,2-Trichloroethane	ND	0.40	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	
1,3-Dichloropropane	ND	0.40	"	
Tetrachloroethene	ND	0.08	"	
Dibromochloromethane	ND	0.40	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (ED60801-BLK1)				Prepared & Anal	yzed: 08-Apr-16	i
Chlorobenzene	ND	0.08	ug/l			
Ethylbenzene	ND	0.40	"			
1,1,1,2-Tetrachloroethane	ND	0.40	"			
m,p-Xylene	ND	0.40	"			
o-Xylene	ND	0.40	"			
Styrene	ND	0.40	"			
Bromoform	ND	0.40	"			
Isopropylbenzene (Cumene)	ND	0.40	"			
1,1,2,2-Tetrachloroethane	ND	0.40	"			
1,2,3-Trichloropropane	ND	0.40	"			
n-Propylbenzene	ND	0.40	"			
Bromobenzene	ND	0.40	"			
1,3,5-Trimethylbenzene	ND	0.40	"			
2-Chlorotoluene	ND	0.40	"			
4-Chlorotoluene	ND	0.40	"			
tert-Butylbenzene	ND	0.40	"			
1,2,4-Trimethylbenzene	ND	0.40	"			
sec-Butylbenzene	ND	0.40	"			
p-Isopropyltoluene	ND	0.40	"			
1,3-Dichlorobenzene	ND	0.40	"			
1,4-Dichlorobenzene	ND	0.40	"			
n-Butylbenzene	ND	0.40	"			
1,2-Dichlorobenzene	ND	0.40	"			
1,2-Dibromo-3-chloropropane	ND	4.0	"			
1,2,4-Trichlorobenzene	ND	0.40	"			
Hexachlorobutadiene	ND	0.40	"			
Naphthalene	ND	0.08	"			
1,2,3-Trichlorobenzene	ND	0.40	"			
Surrogate: Dibromofluoromethane	2.03		"	2.00	101	75-125
Surrogate: 1,2-Dichloroethane-d4	1.98		"	2.00	99.1	75-125
Surrogate: Toluene-d8	2.09		"	2.00	105	75-125
Surrogate: 4-Bromofluorobenzene	2.05		"	2.00	102	75-125

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Reporting

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED60801 - EPA 5030										
LCS (ED60801-BS1)				Prepared &	Analyzed:	08-Apr-16				
Dichlorodifluoromethane (F12)	4.0	0.50	ug/l	5.00		81.0	70-130			
Vinyl chloride	4.4	0.05	"	5.00		87.4	70-130			
Chloroethane	4.8	0.50	"	5.00		96.4	70-130			
Trichlorofluoromethane (F11)	5.0	0.50	"	5.00		99.7	70-130			
1,1-Dichloroethene	5.7	0.50	"	5.00		115	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	6.4	0.50	"	5.00		127	70-130			
Methylene chloride (Dichloromethane)	5.2	0.50	"	5.00		103	70-130			
trans-1,2-Dichloroethene	5.7	0.50	"	5.00		113	70-130			
1,1-Dichloroethane	5.1	0.50	"	5.00		102	70-130			
cis-1,2-Dichloroethene	5.5	0.50	"	5.00		109	70-130			
Chloroform	5.3	0.10	"	5.00		106	70-130			
1,1,1-Trichloroethane	5.2	0.50	"	5.00		103	70-130			
Carbon tetrachloride	5.4	0.10	"	5.00		109	70-130			
1,2-Dichloroethane (EDC)	5.3	0.10	"	5.00		107	70-130			
Benzene	4.8	0.10	"	5.00		95.4	70-130			
Trichloroethene	5.6	0.10	"	5.00		112	70-130			
Toluene	4.8	1.0	"	5.00		96.3	70-130			
1,1,2-Trichloroethane	5.3	0.50	"	5.00		106	70-130			
Tetrachloroethene	5.7	0.10	"	5.00		113	70-130			
Ethylbenzene	5.2	0.50	"	5.00		104	70-130			
1,1,1,2-Tetrachloroethane	5.5	0.50	"	5.00		111	70-130			
m,p-Xylene	9.3	0.50	"	10.0		93.0	70-130			
o-Xylene	4.9	0.50	"	5.00		97.6	70-130			
1,1,2,2-Tetrachloroethane	5.0	0.50	"	5.00		100	70-130			
Surrogate: Dibromofluoromethane	2.51		"	2.50		100	75-125			
Surrogate: 1,2-Dichloroethane-d4	2.53		"	2.50		101	75-125			
Surrogate: Toluene-d8	2.59		"	2.50		104	75-125			
Surrogate: 4-Bromofluorobenzene	2.82		"	2.50		113	75-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST040816-SB2

25864-F Business Center Dr.Project Number:185803664 / 1515 W. 178thReported:Redlands, CA 92374Project Manager:Mr. Jim Dewoody15-Apr-16 07:45

Notes and Definitions

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

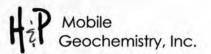
H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.



2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 3/28/2016

	Lat	Client and	Project	Information										Sample	e Rece	eipt (L	ab Us	e Only	1)
Lab Client/Consultant Terra	icon			Project Name / #:	6116	726	0					Date F	Rec'd:		116	Contro	1# -	16028	
Lab Client Project Manager:	nn John			Project Location: S	outly Sal	-lak	0. (T				H&P F	Project #	TE	RI	132		6 -	
Lab Client Address: 6949		n Tech	Dr									Lab W	ork Ord	der#			311		-
Lab Client City, State, Zip: Mid	tale 1st	8404	7	Wynn.	john@te heeler@	vra u	on. (om	6			Sampl	le Intac	LPTY	_	_	_	Notes Be	elow
Phone Number: 881- 74	rl.	0101		kent. w	heelere	tem	acor	1.60	m			Harris Charles	ot Gaug	e ID:		-			223
Reporting Requir		1	urnaroun	d Time	San	pler Info	rmation					Outsid	le Lab:		116	1			22 (
Standard Report Level III		☐ 5-7 da		24-Hr Rush	Sampler(s):		Ille					Receip	ot Notes	/Trackir	ng #:				
Excel EDD Other EDD:_		☐ 3-day		/	Signature: 14/	Mynn	1-1					Fedi	EX	775	97	225	5 3	375	-
CA Geotracker Global ID:		☐ 48-Hr		Other:		7	Jan	<u></u>	-								1.4	D111-10	KRI
		☐ 40-11I	Rusii	U Otiei	Date: 3/28	//6		_					_		_		Lac	PM Initi	iais:
☐ Check if Project Analyte Li: * Preferred VOC units (please ☐ μg/L ☐ μg/m³ ☐ ppt	e choose one):	Керс	ort Otan A	PH Ranges				d Full List XTO-15	VOCs Short List / Project List	□ TO-15	hthalene 8260SV ☐ TO-15 ☐ TO-17m	MTO-15m	TPHv as Diesel (sorbent tube)	atic Fractions TO-15m	ompound	А 8015ш	Fixed Gases by ASTM D1945		
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short Li	Oxygenates R 8260SV	Naphthalene ☐ 8260SV ☐	TPHv as Gas ☐ TO-15m ☐ 8260SVm ☐ TO-15m	TPHv as Diese	Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases b		
9G-1		3/28/16	14:12	SV	400 MC	008	-27A	X	ij.			X		X	X				
96-2		3 28/16	1443	sV	400mL	354	-2.75	λ				X		X	χ				
Approved Resinquishur July		Terrac	on	3/28/16	TOTE: 58	Received by	1	di	1.0	1	`	Company	HT.	P	Date	3/20	7/16	Time: /	350
Approved/Relinquished by:		Company		Date: *	Time:	Received by:						Company:			Date:			Time:	
				Date:	Time:										Date:			Time:	

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 3/21/16
Page 1 of 1

	Lat	Client an	d Project	Information										Sampl	e Rec	eipt (I	Lab Us	e Only	()	
Lab Client/Consultant:	1751A 100				IRGC.	rele	Trie		5	4	-1	Date					ol #: \(02
Lab Client Project Manager:	Friedma	10		Project Name / #: Project Location:	IRGC4	LBI	06	7				H&P	Project	# AN	JTO:	327	216-	-11		_
Lab Client Address: 32.29 E - 5	Orina Stocket	Swite 10	6	Report E-Mail(s):								Lab V	Vork Or	der#	F 6	0	30	94		
I I an Client Cliv State Vin.		30.10.10	0	Jeff.t	rieduc	- 00	rate	2900	· p.								See I		elow	
Phone Number: (107 107 1100	3each 2-4534	VIM	3/22/14	1				0-	_						0760			Temp:		
Reporting Require			urnaroun		EDMAN Canto	npler Info							de Lab:	- 1	0 100	01			171	
Standard Report Level III			2000	000000	Sampler(s):			11				Recei	pt Note:	s/Tracki	ng #:					
7	L Level IV	5-7 da		24-Hr Rush	Signature:	Jagner		-					Paragra.	-,(50						
Excel EDD Other EDD:		☐ 3-day		Mobile Lab	Phi	Me	gr	_	-								K	o PM Init	Y.	0
CA Geotracker Global ID:		☐ 48-Hr	Rush	Other:	Date: 3/2/	116											Lab	PM Init	ials:	KI
☐ Check if Project Analyte List * Preferred VOC units (please ☐ μg/L ☐ μg/m³ ☐ ppbv	choose one):	•		ject Fo Hg by EPA	170-15 K			ard Full List	VOCs Short List / Project List	□ TO-15	Naphthalene	TO-15m	TPHv as Diesel (sorbent tube)	Aromatic/Aliphatic Fractions 8260SVm T0-15m	Compound IPA He	EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tediar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short I	Oxygenates 8260SV	Naphthalene □ 8260SV	TPHv as Gas ☐ 8260SVm	TPHv as Dies ☐ TO-17m	Aromatic/Aliphat	Leak Check Compound	Methane by EPA 8015m	Fixed Gases			
AA-I	NA	3/21/16	1505	AA	6L Summa	5019	-5.18		X			X								
AA.2			1515	AA	6LSumma	5T026	-5.62		X			X		-						
										km	3/22/	IV								
													L							
11						1	10	0				94	S.			,				
Approved Refinguished by/		ulie (T	1/0	3/2/16	1500	Received by:	SH	Ja	7-			Company	LP		Date 3	21/1	6	Time:	0	
Approved Relinquished by:		Company:	0	Date.	Time:	Received by:		C				Company			Date:			Time:		
Approved/Relinquished by:		Company:		Date:	Time:	Received by:						Company	1		Date:			Time:		

FMS004 Revision: 3

Revised: 1/15/2016 Effective: 1/25/2016

Page 1 of 1

Log Sheet: Soil Vapor Sampling with Syringe

H&P Project #:	5T040816-5B2	Tech	Date:	4	8 16		
The second second	1515 W. 178th	st. Govdena	Page:	1	of	1	- 6/
Consultant:	STANTEL		H&P Rep(s):	D. 7	00		Reviewed:
Consultant Rep(s)	Matt 5000	_		AV	Nagne	5	Scanned: 015

Equipment Info Inline Gauge ID#: NA Pump ID#: 615

Purge Volume Information PV Includes: Tubing PV Amount:

3PV

☑ Sand 40%

Dry Bent 50%

Leak Check Compound

☑ 1,1-DFA ☐ 1,1,1,2-TFA A cloth saturated with LCC is placed around

for all samples unless otherwise noted. ☐ Other:

Г	Sample Info	ormatio	n				Pro	be Sp	ecs			Purge & Collection Information						
Ī	Point ID	Syringe ID	Sample Volume (cc)	Sample Time	Probe Depth (ft)	Tubing Length (ft)		Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Leak Check (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg ☑ H₂O
1	5V-2	37	40	0949	5	7	1/8	12	3.5	6	3.5	1	~	3709	200	18'33"	200	Ò
2	54-1	112	40	1010	5	7	14	12	35	6	3.5	V	1	3709	400	9'16"	200	0
3	5V-4	204	40	1029	5	7	1/8	12	3.5	6	3.5	/	1	3709	400	9'16"	200	0
4	50-3	203	40	1049	5	7	1/8	12	3.5	6	3.5	~	/	3701	400	9.16	200	0
5	SV-3 REP	225	40	1050	5	٦	1/8	12	3.5	6	3.5	~	/	3749	MA	MA	200	0
6	5V-5	149	40	1109	5	7	1/8	12	3.5	6	3.5	1	/	3709	400	9.16.	200	0
7	5V-6	112	40	1133	5	7	118	12	3.5	Ь	3.5	1	/	3709	400	9.16.	200	0
8	5V-7	211	40	1156	5	7	1/8	12	3.5	6	3.5	/	/	3709	400	9.16.	200	0
9	5V-8	87	40	1223	5	7	118	12	3.5	6	3.5	/	/	3709	400	9.16"	200	0
10	50.9	204	40	1248	5	7	1/8	12	3.5	4	3.5	/	/	3709	400	916	200	6
11	5V-10	225	40	1308	5	2	118	12	3.5	6	3.5	1	1	3709	400	916	200	0
12	0.10	9	10	300	3													

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

Mr. James Dewoody Stantec - Redlands 25864-F Business Center Dr. Redlands, CA 92374

H&P Project: ST051916-SB1

Client Project: 185803664 / 1515 W 178th St

Dear Mr. James Dewoody:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 19-May-16 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janes Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
SV-12-15'	E605058-01	Vapor	19-May-16	19-May-16
SV-12-15' Rep	E605058-02	Vapor	19-May-16	19-May-16
SV-11-15'	E605058-03	Vapor	19-May-16	19-May-16
SV-17-15'	E605058-04	Vapor	19-May-16	19-May-16
SV-16-15'	E605058-05	Vapor	19-May-16	19-May-16
SV-15-15'	E605058-06	Vapor	19-May-16	19-May-16
SV-11-5'	E605058-07	Vapor	19-May-16	19-May-16
SV-12-5'	E605058-08	Vapor	19-May-16	19-May-16
SV-13-5'	E605058-09	Vapor	19-May-16	19-May-16
SV-17-5'	E605058-10	Vapor	19-May-16	19-May-16
SV-14-5'	E605058-11	Vapor	19-May-16	19-May-16
SV-16-5'	E605058-12	Vapor	19-May-16	19-May-16
SV-15-5'	E605058-13	Vapor	19-May-16	19-May-16

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands	Project: ST0)51916-SB1						
25864-F Business Center Dr.		Project Number: 185803664 / 1515 W 178th St						
Redlands, CA 92374	Project Manager: Mr.	James Dewoody		25-May-16 13:55				
	DETECTIONS SUN	MMARY						
Sample ID: SV-12-15'	Laboratory ID:	E605058-01						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Trichloroethene	2.4	0.08	ug/l	H&P 8260SV				
Tetrachloroethene	31	0.08	ug/l	H&P 8260SV				
Sample ID: SV-12-15' Rep	Laboratory ID:	E605058-02						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Trichloroethene	2.0	0.08	ug/l	H&P 8260SV				
Tetrachloroethene	23	0.08	ug/l	H&P 8260SV				
Sample ID: SV-11-15'	Laboratory ID:	E605058-03						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Trichloroethene	2.8	0.08	ug/l	H&P 8260SV				
Tetrachloroethene	7.4	0.08	ug/l	H&P 8260SV				
Sample ID: SV-17-15'	Laboratory ID:	E605058-04						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Trichloroethene	0.40	0.08	ug/l	H&P 8260SV				
Tetrachloroethene	24	0.08	ug/l	H&P 8260SV				
Sample ID: SV-16-15'	Laboratory ID:	E605058-05						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Benzene	0.09	0.08	ug/l	H&P 8260SV				
Trichloroethene	0.30	0.08	ug/l	H&P 8260SV				
Tetrachloroethene	3.5	0.08	ug/l	H&P 8260SV				
Sample ID: SV-15-15'	Laboratory ID:	E605058-06						
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Benzene	0.09	0.08	ug/l	H&P 8260SV				
	3.1	0.08	ug/l	H&P 8260SV				
Trichloroethene	V1.							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands	Project: ST	051916-SB1				
25864-F Business Center Dr.	Project Number: 18	5803664 / 1515 W 17	8th St	Reported:		
Redlands, CA 92374	Project Manager: Mi	r. James Dewoody		25-May-16 13:55		
Sample ID: SV-11-5'	Laboratory ID:	E605058-07				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Benzene	0.17	0.08	ug/l	H&P 8260SV		
Trichloroethene	2.1	0.08	ug/l	H&P 8260SV		
Tetrachloroethene	6.1	0.08	ug/l	H&P 8260SV		
m,p-Xylene	0.51	0.40	ug/l	H&P 8260SV		
Sample ID: SV-12-5'	Laboratory ID:	E605058-08				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Trichloroethene	1.3	0.08	ug/l	H&P 8260SV		
Tetrachloroethene	15	0.08	ug/l	H&P 8260SV		
Sample ID: SV-13-5'	Laboratory ID:	E605058-09				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Benzene	0.10	0.08	ug/l	H&P 8260SV		
Trichloroethene	0.13	0.08	ug/l	H&P 8260SV		
Tetrachloroethene	68	0.08	ug/l	H&P 8260SV		
Sample ID: SV-17-5'	Laboratory ID:	E605058-10				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Benzene	0.15	0.08	ug/l	H&P 8260SV		
Trichloroethene	0.42	0.08	ug/l	H&P 8260SV		
Tetrachloroethene	27	0.08	ug/l	H&P 8260SV		
Sample ID: SV-14-5'	Laboratory ID:	E605058-11				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Benzene	0.14	0.08	ug/l	H&P 8260SV		
Trichloroethene	0.28	0.08	ug/l	H&P 8260SV		
Tetrachloroethene	21	0.08	ug/l	H&P 8260SV		
Sample ID: SV-16-5'	Laboratory ID:	E605058-12				
		Reporting				
Analyte	Result		Units	Method	Notes	
Trichloroethene	0.64	0.08	ug/l	H&P 8260SV		
Tetrachloroethene	14	0.08	ug/l	H&P 8260SV		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Sample ID: SV-15-5' Laboratory ID: E605058-13									
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Trichloroethene	1.7	0.08	ug/l	H&P 8260SV					
Tetrachloroethene	4.6	0.08	ug/l	H&P 8260SV					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-15' (E605058-01) Vapor Sampled: 19-Ma	ny-16 Receive	d: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	2.4	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	31	0.40	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.40	"	"	"	"	"	"	
Ethylbenzene	ND ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND ND	0.40	"	"	"	"	"	"	
m,p regione	IND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

25-May-16 13:55

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Volatile Organic Compounds by H&P 8260SV

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-15' (E605058-01) Vapor	Sampled: 19-May-16	Received	l: 19-May-16							
o-Xylene		ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene		ND	0.40	"	"	"	"	"	"	
Bromoform		ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)		ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	0.40	"	"	"	"	"	"	
n-Propylbenzene		ND	0.40	"	"	"	"	"	"	
Bromobenzene		ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene		ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene		ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
n-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.40	"	"	"	"	"	"	
Naphthalene		ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan			121 %	75-		"	"	"	"	
Surrogate: 1,2-Dichloroethane-d-	4		122 %	75-		"	"	"	"	
Surrogate: Toluene-d8			115 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenzen	e		111 %	75-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-15' Rep (E605058-02) Vapor Sam	pled: 19-May-16 Re	ceived: 19-Ma	y-16						
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	2.0	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	23	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.48	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
,,,	140	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-15' Rep (E605058-02) Vapor	Sampled: 19-May-16 Rec	eived: 19-Ma	y-16						
o-Xylene	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	n	"	"	"	
Surrogate: Dibromofluoromethane		109 %	75-	-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		113 %		.125	"	"	"	"	
Surrogate: Toluene-d8		102 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %		125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-11-15' (E605058-03) Vapor Sampled: 19-May-1	6 Receive	d: 19-May-16				•			
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	2.8	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	7.4	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

25-May-16 13:55

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Volatile Organic Compounds by H&P 8260SV

Analyte	1	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-11-15' (E605058-03) Vapor	Sampled: 19-May-16	Received	l: 19-May-16							
o-Xylene		ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene		ND	0.40	"	"	"	"	"	"	
Bromoform		ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)		ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	0.40	"	"	"	"	"	"	
n-Propylbenzene		ND	0.40	"	"	"	"	"	"	
Bromobenzene		ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene		ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene		ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
n-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.40	"	"	"	"	"	"	
Naphthalene		ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	o.		119 %	75	-125	,,	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			111 %		.125	"	"	,,	"	
Surrogate: Toluene-d8	,		101 %		.125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	2		114 %		125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-17-15' (E605058-04) Vapor Sampled: 19-M	lay-16 Receive	d: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	0.40	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.40	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	24	0.40	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	,,	"	"	,,	"	
Chlorobenzene	ND	0.40	"	,,	"	"	,,	"	
Ethylbenzene	ND ND	0.40	"	,,	"	"	,,	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	"	,,	,,	"	,,	"	
m,p-Xylene	ND ND	0.40	"	,,	,,	"	,,	"	
III,p-Ayielle	טא	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	R	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-17-15' (E605058-04) Vapor	Sampled: 19-May-16	Received	l: 19-May-16							
o-Xylene		ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene		ND	0.40	"	"	"	"	"	"	
Bromoform		ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)		ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	0.40	"	"	"	"	"	"	
n-Propylbenzene		ND	0.40	"	"	"	"	"	"	
Bromobenzene		ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene		ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene		ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
n-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.40	"	"	"	"	"	"	
Naphthalene		ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	10		112 %	75.	-125	,,	"	"	"	
Surrogate: 1,2-Dichloroethane-d-			114 %		-125 -125	"	"	"	"	
Surrogate: Toluene-d8	,		112 %		-125 -125	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	e		95.5 %		-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-16-15' (E605058-05) Vapor Sampled: 19-M	ay-16 Received	l: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	n .	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	n .	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.09	0.08	"	"	"	"	"	"	
Trichloroethene	0.30	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	3.5	0.40	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"			"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Her Frome Geochemstry, Inc.												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
SV-16-15' (E605058-05) Vapor Sampled: 19	-May-16 Received	d: 19-May-16										
o-Xylene	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV				
Styrene	ND	0.40	"	"	"	"	"	"				
Bromoform	ND	0.40	"	"	"	"	"	"				
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"				
n-Propylbenzene	ND	0.40	"	"	"	"	"	"				
Bromobenzene	ND	0.40	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"				
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
n-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"				
Naphthalene	ND	0.08	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Surrogate: Dibromofluoromethane		106 %	75-12	5	"	"	"	"				
Surrogate: 1,2-Dichloroethane-d4		108 %	75-12	5	"	"	"	"				
Surrogate: Toluene-d8		97.9 %	75-12	5	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		105 %	75-12	5	"	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-15-15' (E605058-06) Vapor Sampled: 19-M	1ay-16 Receive	d: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	n .	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	n .	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	n .	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.09	0.08	"	"	"	"	"	"	
Trichloroethene	3.1	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	7.1	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
111,p 24,90010	טאו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Reported:
Project Manager: Mr. James Dewoody 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	1	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-15-15' (E605058-06) Vapor	Sampled: 19-May-16	Received	l: 19-May-16							
o-Xylene		ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene		ND	0.40	"	"	"	"	"	"	
Bromoform		ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)		ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	0.40	"	"	"	"	"	"	
n-Propylbenzene		ND	0.40	"	"	"	"	"	"	
Bromobenzene		ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene		ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene		ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
n-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.40	"	"	"	"	"	"	
Naphthalene		ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
C			107.07		125	"	"	"	"	
Surrogate: Dibromofluoromethan			107 %	75-1			"			
Surrogate: 1,2-Dichloroethane-d-	4		107 %	75-1		"	"	"	"	
Surrogate: Toluene-d8			99.4 %	75-1		"		"	"	
Surrogate: 4-Bromofluorobenzen	е		106 %	75-1	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-11-5' (E605058-07) Vapor Sampled: 19-May-16	Received:	: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	n .	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.17	0.08	"	"	"	"	"	"	
Trichloroethene	2.1	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	6.1	0.48	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	0.51	0.40	"	"	"	"	"	n .	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-11-5' (E605058-07) Vapor Sampled: 19-	-May-16 Received:	19-May-16							
o-Xylene	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	_
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
C		110.07	75 10).5	,,	"	"	"	
Surrogate: Dibromofluoromethane		110 %	75-12		"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		113 %	75-12		"	"	"	"	
Surrogate: Toluene-d8		103 %	75-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	75-12	:5	"	,,	"	,,	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-5' (E605058-08) Vapor Sampled: 19-May-10	Received	: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	n .	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	n .	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	n .	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	1.3	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	15	0.48	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
m,p Ayrono	IND	U. 4 U							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Resu	Reporting alt Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-5' (E605058-08) Vapor San	npled: 19-May-16 Rec	eived: 19-May-16							
o-Xylene	N	D 0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene	N	D 0.40	"	"	"	"	"	"	
Bromoform	N	D 0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	N	D 0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	N	D 0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	N	D 0.40	"	"	"	"	"	"	
n-Propylbenzene	N	D 0.40	"	"	"	"	"	"	
Bromobenzene	N	D 0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	N	D 0.40	"	"	"	"	"	"	
2-Chlorotoluene	N	D 0.40	"	"	"	"	"	"	
4-Chlorotoluene	N	D 0.40	"	"	"	"	"	"	
tert-Butylbenzene	N	D 0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	N	D 0.40	"	"	"	"	"	"	
sec-Butylbenzene	N	D 0.40	"	"	"	"	"	"	
p-Isopropyltoluene	N	D 0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	N	D 0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	N	D 0.40	"	"	"	"	"	"	
n-Butylbenzene	N	D 0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	N	D 0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	N	D 4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	N	D 0.40	"	"	"	"	"	"	
Hexachlorobutadiene	N	D 0.40	"	"	"	"	"	"	
Naphthalene	N	D 0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	N	D 0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	75-1	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		117 %	75-1	125	"	"	"	"	
Surrogate: Toluene-d8		100 %	75-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	75-1	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-13-5' (E605058-09) Vapor Sampled: 19-May-	16 Received	l: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.10	0.08	"	"	"	n .	"	"	
Trichloroethene	0.13	0.08	"	"	"	n .	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	n .	"	"	
Bromodichloromethane	ND	0.40	"	"	"	n .	"	"	
Dibromomethane	ND	0.40	"	"	"	n .	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	n .	"	"	
Toluene	ND	0.80	"	"	"	n .	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	68	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
			"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-13-5' (E605058-09) Vapor Sampled:	19-May-16 Received:	19-May-16							
o-Xylene	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
C		101.0/	75 10	25	,,	"	"	"	
Surrogate: Dibromofluoromethane		101 % 108 %	75-12 75-12		,,	,,	,,	"	
Surrogate: 1,2-Dichloroethane-d4		108 % 102 %	/5-12 75-12		,,	,,	,,	"	
Surrogate: Toluene-d8		102 % 111 %	/5-12 75-12		,,	,,	,,	"	
Surrogate: 4-Bromofluorobenzene		111 %	/3-12	<i>:</i> 3					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

yte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
7-5' (E605058-10) Vapor Sampled: 19-May-16	Received	l: 19-May-16							
Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
lorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
romethane	ND	0.40	"	"	"	"	"	"	
l chloride	ND	0.04	"	"	"	"	"	"	
nomethane	ND	0.40	"	"	"	"	"	"	
roethane	ND	0.40	"	"	"	"	"	"	
lorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
Dichloroethene	ND	0.40	"	"	"	"	"	"	
Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
ylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
yl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Dichloroethane	ND	0.40	"	"	"	"	"	"	
Dichloropropane	ND	0.40	"	"	"	"	"	"	
,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
roform	ND	0.08	"	"	"	"	"	"	
nochloromethane	ND	0.40	"	"	"	"	"	"	
-Trichloroethane	ND	0.40	"	"	"	"	"	"	
Dichloropropene	ND	0.40	"	"	"	"	"	"	
on tetrachloride	ND	0.08	"	"	"	"	"	"	
Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
ene	0.15	0.08	"	"	"	n .	"	"	
nloroethene	0.42	0.08	"	"	"	"	"	"	
Dichloropropane	ND	0.40	"	"	"	"	"	"	
nodichloromethane	ND	0.40	"	"	"	"	"	"	
omomethane	ND	0.40	"	"	"	"	"	"	
,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
ene	ND	0.80	"	"	"	"	"	"	
-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
-Trichloroethane	ND	0.40	"	"	"	"	"	"	
Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
Dichloropropane	ND	0.40	"	"	"	"	"	"	
achloroethene	27	0.08	"	"	"	"	"	"	
omochloromethane	ND	0.40	"	"	"	"	"	"	
robenzene	ND	0.08	"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
lbenzene ,2-Tetrachloroethane Xylene	ND ND ND	0.40 0.40 0.40			"		"		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

25-May-16 13:55

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-17-5' (E605058-10) Vapor S	ampled: 19-May-16 Receive	ved: 19-May-16							
o-Xylene	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
							"		
Surrogate: Dibromofluoromethane		104 %	75-1		"	"		"	
Surrogate: 1,2-Dichloroethane-d4		106 %	75-1		"	"	"	"	
Surrogate: Toluene-d8		99.5 %	75-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	75-1	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-14-5' (E605058-11) Vapor Sampled: 19-May-1	6 Received	l: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	0.14	0.08	"	"	"	"	"	"	
Trichloroethene	0.28	0.08	"	"	"	n .	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	n .	"	"	
Bromodichloromethane	ND	0.40	"	"	"	n .	"	"	
Dibromomethane	ND	0.40	"	"	"	n .	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	21	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
			"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-14-5' (E605058-11) Vapor	Sampled: 19-May-16	Received:	19-May-16							
o-Xylene		ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene		ND	0.40	"	"	"	"	"	"	
Bromoform		ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)		ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	0.40	"	"	"	"	"	"	
n-Propylbenzene		ND	0.40	"	"	"	"	"	"	
Bromobenzene		ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene		ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene		ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene		ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
n-Butylbenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.40	"	"	"	"	"	"	
Naphthalene		ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	0.40	"	"	"	II .	"	"	
Surrogate: Dibromofluorometha.	na		108 %	75	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-a			113 %	75 75		"	"	"	"	
Surrogate: Toluene-d8	FT		97.0 %	75 75		"	"	"	"	
Surrogate: 4-Bromofluorobenzen	ne		94.3 %	75 75		"	"	"	"	
Sail Saile. I Diomojiaoi oochizer			71.570	,5.						

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

ND ND ND ND ND ND ND ND ND ND ND ND	19-May-16 0.40 0.40 0.40 0.04 0.40 0.40 0.40 0.	ug/l " " " "	0.04	EE61907	19-May-16	19-May-16 " "	H&P 8260SV	
ND ND ND ND ND ND ND ND	0.40 0.40 0.04 0.40 0.40 0.40	" " "	" "	"	"	"	"	
ND ND ND ND ND ND ND	0.40 0.04 0.40 0.40 0.40 0.40	" " "	"	"	"	"		
ND ND ND ND ND ND	0.04 0.40 0.40 0.40 0.40	"	"	"	"		"	
ND ND ND ND ND	0.40 0.40 0.40 0.40	"	"			"		
ND ND ND ND	0.40 0.40 0.40	"		"			"	
ND ND ND	0.40 0.40				"	"	"	
ND ND	0.40	"	"	"	"	"	"	
ND			"	"	"	"	"	
	0.40	"	"	"	"	"	"	
ND	0.10	"	"	"	"	"	"	
	0.40	"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
ND	0.08	"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
		"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
0.64		"	"	"	"	"	"	
	0.40	"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
	0.40	"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
	0.40	"	"	"	"	"	"	
		"	"	"	"	"	"	
ND	0.40	"	"	"	"	"	"	
14	0.08	"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
	ND N	ND 0.40 ND 0.08 ND 0.08 ND 0.08 ND 0.40	ND 0.40 " ND 0.08 " ND 0.40 " ND 0.40 " ND 0.08 " ND 0.40 "	ND 0.40 " " " ND 0.40 " " " ND 0.40 " " " " " ND 0.40 " " " " ND 0.40 " " " " ND 0.40 " " " " " " " " " " " " " " " " " " "	ND 0.40 " " " " " ND 0.40 " " " " ND 0.40 " " " " " ND 0.40 " " " " " ND 0.40 " " " " ND 0.40 " " " " ND 0.40 " " " " ND 0.88 " " " " ND 0.88 " " " " ND 0.40 " " " " " ND 0.40 " " " " ND 0.40 " " " " " " " ND 0.40 " " " " " " " ND 0.40 " " " " " " " ND 0.40 " " " " " " " " ND 0.40 " " " " " " " " ND 0.40 " " " " " " " " " " ND 0.40 " " " " " " " " " " ND 0.40 " " " " " " " " " " ND 0.40 " " " " " " " " " " ND 0.40 " " " " " " " " " " " " " " " " " " "	ND 0.40 " " " " " " " ND 0.40 " " " " " " " " " " " ND 0.40 " " " " " " " " " " " " " " " " " " "	ND	ND

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-16-5' (E605058-12) Vapor Sampled: 19	-May-16 Received:	19-May-16							
o-Xylene	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.08	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	75-1	25	"	"	,,	"	
Surrogate: 1,2-Dichloroethane-d4		109 %	75-1 75-1		"	"	,,	"	
Surrogate: Toluene-d8		99.3 %	75-1 75-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	75-1 75-1		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-15-5' (E605058-13) Vapor Sampled: 19-May-	16 Received	l: 19-May-16							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.04	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.08	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.08	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.08	"	"	"	"	"	"	
Benzene	ND	0.08	"	"	"	"	"	"	
Trichloroethene	1.7	0.08	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	4.6	0.08	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.08	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
-			"	"	"	"	"	"	
			"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane m,p-Xylene	ND ND	0.40 0.40	"	"		"			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands

Project: ST051916-SB1

25864-F Business Center Dr. Redlands, CA 92374 Project Number: 185803664 / 1515 W 178th St Project Manager: Mr. James Dewoody

Reported: 25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV

Her widdle Geochemistry, me.													
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes				
SV-15-5' (E605058-13) Vapor Sampled: 19-M	1ay-16 Received	: 19-May-16											
o-Xylene	ND	0.40	ug/l	0.04	EE61907	19-May-16	19-May-16	H&P 8260SV					
Styrene	ND	0.40	"	"	"	"	"	"					
Bromoform	ND	0.40	"	"	"	"	"	"					
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"					
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"					
n-Propylbenzene	ND	0.40	"	"	"	"	"	"					
Bromobenzene	ND	0.40	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"					
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"					
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"					
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"					
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"					
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"					
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
n-Butylbenzene	ND	0.40	"	"	"	"	"	"					
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"					
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"					
Naphthalene	ND	0.08	"	"	"	"	"	"					
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"					
Surrogate: Dibromofluoromethane		111 %	75-12	5	"	"	"	"					
Surrogate: 1,2-Dichloroethane-d4		118 %	75-12	5	"	"	"	"					
Surrogate: Toluene-d8		101 %	75-12	5	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		104 %	75-12	5	"	"	"	"					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE61907 - EPA 5030				
Blank (EE61907-BLK1)				Prepared & Analyzed: 19-May-16
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	
Dichlorodifluoromethane (F12)	ND	0.40	"	
Chloromethane	ND	0.40	"	
Vinyl chloride	ND	0.04	"	
Bromomethane	ND	0.40	"	
Chloroethane	ND	0.40	"	
Trichlorofluoromethane (F11)	ND	0.40	"	
,1-Dichloroethene	ND	0.40	"	
,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	
rans-1,2-Dichloroethene	ND	0.40	"	
,1-Dichloroethane	ND	0.40	"	
2,2-Dichloropropane	ND	0.40	"	
sis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.08	"	
Bromochloromethane	ND	0.40	"	
,1,1-Trichloroethane	ND	0.40	"	
,1-Dichloropropene	ND	0.40	"	
Carbon tetrachloride	ND	0.08	"	
,2-Dichloroethane (EDC)	ND	0.08	"	
Benzene	ND	0.08	"	
Trichloroethene	ND	0.08	"	
,2-Dichloropropane	ND	0.40	"	
Bromodichloromethane	ND	0.40	"	
Dibromomethane	ND	0.40	"	
cis-1,3-Dichloropropene	ND	0.40	"	
Toluene	ND	0.80	"	
rans-1,3-Dichloropropene	ND	0.40	"	
1,1,2-Trichloroethane	ND	0.40	"	
,2-Dibromoethane (EDB)	ND	0.40	"	
1,3-Dichloropropane	ND	0.40	"	
Tetrachloroethene	ND	0.08	"	
Dibromochloromethane	ND	0.40	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EE61907-BLK1)				Prepared & Anal	yzed: 19-May-16	5	
Chlorobenzene	ND	0.08	ug/l				
Ethylbenzene	ND	0.40	"				
1,1,1,2-Tetrachloroethane	ND	0.40	"				
n,p-Xylene	ND	0.40	"				
o-Xylene	ND	0.40	"				
Styrene	ND	0.40	"				
Bromoform	ND	0.40	"				
sopropylbenzene (Cumene)	ND	0.40	"				
1,1,2,2-Tetrachloroethane	ND	0.40	"				
1,2,3-Trichloropropane	ND	0.40	"				
n-Propylbenzene	ND	0.40	"				
Bromobenzene	ND	0.40	"				
1,3,5-Trimethylbenzene	ND	0.40	"				
2-Chlorotoluene	ND	0.40	"				
-Chlorotoluene	ND	0.40	"				
ert-Butylbenzene	ND	0.40	"				
,2,4-Trimethylbenzene	ND	0.40	"				
ec-Butylbenzene	ND	0.40	"				
o-Isopropyltoluene	ND	0.40	"				
,3-Dichlorobenzene	ND	0.40	"				
,4-Dichlorobenzene	ND	0.40	"				
n-Butylbenzene	ND	0.40	"				
,2-Dichlorobenzene	ND	0.40	"				
,2-Dibromo-3-chloropropane	ND	4.0	"				
,2,4-Trichlorobenzene	ND	0.40	"				
Hexachlorobutadiene	ND	0.40	"				
Naphthalene	ND	0.08	"				
,2,3-Trichlorobenzene	ND	0.40	"				
Surrogate: Dibromofluoromethane	1.98		"	2.00	99.0	75-125	
Surrogate: 1,2-Dichloroethane-d4	2.14		"	2.00	107	75-125	
Surrogate: Toluene-d8	1.60		"	2.00	80.2	75-125	
Surrogate: 4-Bromofluorobenzene	2.29		"	2.00	115	75-125	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Reporting

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

%REC

		Reporting		Spike	Source		/orch		KID	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE61907 - EPA 5030										
LCS (EE61907-BS1)				Prepared &	Analyzed:	19-May-16				
Dichlorodifluoromethane (F12)	2.8	0.40	ug/l	4.00		70.1	70-130			
Vinyl chloride	3.0	0.04	"	4.00		75.7	70-130			
Chloroethane	3.4	0.40	"	4.00		85.2	70-130			
Trichlorofluoromethane (F11)	3.6	0.40	"	4.00		89.8	70-130			
,1-Dichloroethene	3.6	0.40	"	4.00		89.3	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	4.0	0.40	"	4.00		101	70-130			
Methylene chloride (Dichloromethane)	4.0	0.40	"	4.00		101	70-130			
rans-1,2-Dichloroethene	4.4	0.40	"	4.00		111	70-130			
1,1-Dichloroethane	3.7	0.40	"	4.00		93.1	70-130			
cis-1,2-Dichloroethene	4.6	0.40	"	4.00		114	70-130			
Chloroform	4.6	0.08	"	4.00		116	70-130			
,1,1-Trichloroethane	4.5	0.40	"	4.00		111	70-130			
Carbon tetrachloride	4.5	0.08	"	4.00		111	70-130			
,2-Dichloroethane (EDC)	4.5	0.08	"	4.00		112	70-130			
Benzene	4.5	0.08	"	4.00		113	70-130			
Trichloroethene	4.9	0.08	"	4.00		122	70-130			
Toluene	4.2	0.80	"	4.00		106	70-130			
1,1,2-Trichloroethane	4.5	0.40	"	4.00		113	70-130			
Tetrachloroethene	4.7	0.08	"	4.00		118	70-130			
Ethylbenzene	4.5	0.40	"	4.00		112	70-130			
,1,1,2-Tetrachloroethane	4.6	0.40	"	4.00		116	70-130			
n,p-Xylene	8.8	0.40	"	8.00		110	70-130			
o-Xylene	4.5	0.40	"	4.00		111	70-130			
1,1,2,2-Tetrachloroethane	4.4	0.40	"	4.00		109	70-130			
Surrogate: Dibromofluoromethane	2.39		"	2.00		120	75-125			
Surrogate: 1,2-Dichloroethane-d4	2.34		"	2.00		117	75-125			
Surrogate: Toluene-d8	2.12		"	2.00		106	75-125			
Surrogate: 4-Bromofluorobenzene	2.09		"	2.00		105	75-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Redlands Project: ST051916-SB1

25864-F Business Center Dr.Project Number:185803664 / 1515 W 178th StReported:Redlands, CA 92374Project Manager:Mr. James Dewoody25-May-16 13:55

Notes and Definitions

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix


H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com Einfo@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 5-19-14
Page 1 of 2

	Lal	Client an	d Project	Information					1						eipt (L	ab Us	e Only	1)	
Lab Client/Consultant: Stantec				Project Name /	* 18580366	4			1		Date	Rec'd:	5-19-1	le .	Contro	ol #: le	0448.	03/.	04
Lab Client Project Manager: Jim	arrodit			Project Location	1515 W. 1784	h St. G	arden	0		1	H&P	Project	# 57	1051	9114-	SBI		457.	-
Lab Client Address: 25864 F B	ucian co Mala	Do		Donat E Maille							Lab V	Vork Or	der#	Flance	5058	10	561	907	- 1
Lab Client City, State, Zip: Red land	La co cante	d.		james.d.	woody@ St Sappe St	antec. ci)M				-					See I			
Phone Number: 909-735-76	15 CH · 9231	T		matthew	Sappe	441 co. c.	9.5					pt Gaug					Temp:		
		1 -						_				de Lab:				-		-	
Reporting Requirer			urnaroun	Samplar(a):			1		Recei	pt Note	s/Tracki	na #:	-	_	-	-			
Standard Report Level III		☐ 5-7 da			0: 1	1/ 00	lor	-											
Excel EDD Other EDD:		3-day		Mobile Lab			1												
CA Geotracker Global ID:		☐ 48-Hr	Rush	Other:	Date: 5	1191	16									Lat	PM Init	tials:	
☐ Check if Project Analyte List i * Preferred VOC units (please o ☐ μg/L ☐ μg/m³ ☐ ppbv	hoose one):	DATE	TIME	SAMPLE TY Indoor Air (IA), Am Air (AA), Subslab	ient SIZE & TYPI	E E	Lab use only: Receipt Vac	VOCs Standard Full List № 8260SV □ T0-15 VOCs Short List / Project List □ 8260SV	Oxygenates	thalene 260SV TO-15 T	as Gas 260SVm	TPHv as Diesel (sorbent tube)	Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	(if applicable)	mm/dd/yy	24hr clock	Soil Vapor (SV		NO O	Lab u Rece		Oxyg	Naph	TPF [TPH T	Arom 8	Z e	Meth	Fixed			
SV-12-15'		05/19/16	0750	SV	Glass Syring	e		X						X,				-	
SV-12-15' Rep		1	0751					X						X					
SV-11-15'			0805			1		X						X					
SV-17-15'		Telegraph	0834					X						X					
SV-16-151			0906					X				11	0.3	X					
SV-15-151			0928					X						X		. 3			
SV-11-51			0959					X	-					1					
SV-12-51			1021					X						X					
SV-, 13-5'		- 1	1056					X						X				()	
51-17-51		V	1235	V	V	0.1		X						X					
Approyed/Reinfushed by:		Stan	40	5/19/16	1530	Received by	enta	Im		,	Company	Mob	le	Date:	19-14		Time 150	03	
Approved/Relinquished by:		Company		Date:	Time:	Received by:		0			Company			Date			Time:		
Approved/Relinquished by:		Company		Date:	Time:	Received by:					Company	r.		Date			Time:		

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: <u>5-19-14</u>
Page <u>1</u> of <u>2</u>

	Lat	Client and	d Project	Information														e Only		
Lab Client/Consultant: Stantec				Project Name / #:	8580364							Date F	Rec'd: 5	-19-1	6	Contro	3448	1.03/	.04	
Lab Client Project Manager: Jim De	wand.			Project Location:	11. 1784 St	. Gara	dena					H&P	Project	# S7	1051	916	-SB	1		
Lab Client Address: 258/4 4 F 3	Susings Cent	e Driv	,	Project Location: 1515 W. 1784 St., Gardena Report E-Mail(s): james. dewoody e Stantec. com Mathew. Sappe								H&P Project # ST051916-SB Lab Work Order # £605058 / ££61907								
Lab Client Address: 25864 F. Busines Center Drive Lab Client City, State, Zip: Redlands, CA. 92374				James, dewoody & Stantec. com														Notes Be		
Phone Number: 909-335-6116	x 8012	'		nather	. sappe							Recei	pt Gaug	e ID:				Temp:		
Reporting Requireme		Т	urnaroun			pler Info					7	Outsid	de Lab:							
	Level IV	☐ 5-7 da	y Stnd	24-Hr Rush	Completel:	Tay						Recei	pt Notes	s/Tracki	ng #:					
Excel EDD Other EDD: 3-day Rush				Mobile Lab	Signature:															
CA Geotracker Global ID:		☐ 48-Hr		Other:	Date: 57	119/1	6					1					Lat	PM Init	ials:	
Additional Instructions to Laborate Check if Project Analyte List is A * Preferred VOC units (please cho	Attached oose one):				CONTUNED	~	l e	ard Full List	VOCs Short List / Project List	□ TO-15	Naphthalene ☐ 8260SV ☐ TO-15 ☐ TO-17m	TPHv as Gas ☐ 8260SVm ☐ TO-15m	sel (sorbent tube)	Aromatic/Aliphatic Fractions	Compound IPA He	EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short	Oxygenates 8260SV	Naphthalene	TPHv as Gas ☐ 8260SVn	TPHv as Die: ☐TO-17m	Aromatic/Ali	Leak Check Compound	Methane by EPA 8015m	Fixed Gases			
SV-14-51		05/19/14	1306	SV	Glass Syringe			X							X					
SV-16-51		1	1331		1			X							X					
SV-15-51		V	1406	V	V			X							X					
																				-
					,															
Approved IR Hished by:		Company:		Date: /	Time:	Received by		0	v			9pmpany	344-1	1	Date:			Time: 5	02	-
Approved/Relinquished by: Approved/Relinquished by:		Stant Company:	"	5/19/16 Date	15:30 Time:	Received by:	ento	Z	W		-	Company		ile	5- Date:	19-16		Time:	20	
Approved/Relinquished by:		Company		Date:	Time:	Received by:						Company	r		Date:			Time:		

H&P Mobile Geochemistry, Inc. 2470 Impala Drive, Carlsbad, CA 92010 Field Office in Signal Hill, CA (Los Angeles) Ph: 800-834-9888 www.handpmg.com

H&P Method 8260SV (Modified EPA 8260B) Soil Vapor VOC List

 OW	-	

Compound	CAS#	Vapor (µg/L)
Dichlorodifluoromethane (F12)	75-71-8	0.4
Chloromethane	74-87-3	0.4
Vinyl chloride	75-01-4	0.04
Bromomethane	74-83-9	0.4
Chloroethane	75-00-3	0.4
Trichlorofluoromethane (F11)	75-69-4	0.4
1,1-Dichloroethene	75-35-4	0.4
1,1,2-Trichlorotrifluoroethane (F113)	76-13-1	0.4
Methylene chloride (Dichloromethane)	75-09-2	0.4
Methyl tertiary-butyl ether (MTBE)	1634-04-4	0.4
trans-1,2-Dichloroethene	156-60-5	0.4
1,1-Dichloroethane	75-34-3	0.4
2,2-Dichloropropane	594-20-7	0.4
cis-1,2-Dichloroethene	156-59-2	0.4
Bromochloromethane	74-97-5	0.4
Chloroform	67-66-3	0.08
1,1,1-Trichloroethane	71-55-6	0.4
1,1-Dichloropropene	563-58-6	0.4
Carbon tetrachloride	56-23-5	0.08
1,2-Dichloroethane (EDC)	107-06-2	0.08
Benzene	71-43-2	0.08
Trichloroethene	79-01-6	0.08
1,2-Dichloropropane	78-87-5	0.4
Dibromomethane	74-95-3	0.4
Bromodichloromethane	75-27-4	0.4
cis-1,3-Dichloropropene	10061-01-5	0.4
Toluene	108-88-3	0.8
trans-1,3-Dichloropropene	10061-02-6	0.4
1,1,2-Trichloroethane	79-00-5	0.4
1,3-Dichloropropane	142-28-9	0.4
Tetrachloroethene	127-18-4	0.08
Dibromochloromethane	124-48-1	0.4
1,2-Dibromoethane (EDB)	106-93-4	0.4
Chlorobenzene	108-90-7	0.08
1,1,1,2-Tetrachloroethane	630-20-6	0.4
Ethylbenzene	100-41-4	0.4
m,p-Xylene	179601-23-1	0.4
o-Xylene	95-47-6	0.4
Styrene	100-42-5	0.4
Bromoform	75-25-2	0.4
Isopropylbenzene (Cumene)	98-82-8	0.4
1,1,2,2-Tetrachloroethane	79-34-5	0.4
n-Propylbenzene	103-65-1	0.4

2470 Impala Drive, Carlsbad, CA 92010 Field Office in Signal Hill, CA (Los Angeles) Ph: 800-834-9888 www.handpmg.com

H&P Method 8260SV (Modified EPA 8260B) Soil Vapor VOC List

Low	KL.
Vapor	(ua/

		Low RL*
Compound	CAS#	Vapor (µg/L)
1,2,3-Trichloropropane	96-18-4	0.4
Bromobenzene	108-86-1	0.4
2-Chlorotoluene	95-49-8	0.4
1,3,5-Trimethylbenzene	108-67-8	0.4
4-Chlorotoluene	106-43-4	0.4
tert-Butylbenzene	98-06-6	0.4
1,2,4-Trimethylbenzene	95-63-6	0.4
sec-Butylbenzene	135-98-8	0.4
p-Isopropyltoluene	99-87-6	0.4
1,3-Dichlorobenzene	541-73-1	0.4
1,4-Dichlorobenzene	106-46-7	0.4
n-Butylbenzene	104-51-8	0.4
1,2-Dichlorobenzene	95-50-1	0.4
1,2-Dibromo-3-chloropropane	96-12-8	4.0
1,2,4-Trichlorobenzene	120-82-1	0.4
Hexachlorobutadiene	87-68-3	0.4
Naphthalene	91-20-3	0.08
1,2,3-Trichlorobenzene	87-61-6	0.4
Leak Check Compound		
1,1-Difluoroethane (LCC)	75-37-6	0.4

^{*}NOTE: Low RLs can be achieved using a 25cc large volume injection - (Commercial CHHSLs)

FMS004 Revision: 3

Revised: 1/15/2016 Effective: 1/25/2016

Page 1 of 1

Log Sheet: Soil Vapor Sampling with Syringe

H&P Project #:	ST051916-SB1	Date:	5-19-16		
Site Address:	1515 W. 178th St. Gardena	Page:	1	of Z	
Consultant:	Stantec	H&P Rep(s):	C. Smith	T. Taylox	Reviewed: 5/25/16 K96
Consultant Rep(s):	Matt				Scanned:

Equipment Info

Pump ID#: 006

PV Amount: 3 PV PV Includes: Tubing

☑ Sand 40%

Dry Bent 50%

Leak Check Compound

Q1,1-DFA

A cloth saturated with LCC is placed around ☐ 1,1,1,2-TFA tubing connections and probe seal. This is done ☐ IPA for all samples unless otherwise noted. ☐ Other:

	Sample Inf	ormatio	n		Probe Specs								Purge & Collection Information						
	Point ID	Syringe ID	Sample Volume (cc)		Probe Depth (ft)	Tubing Length (ft)	Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Leak Check (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	A second second	Sample Flow Rate (mL/min)		
1	SV-14-15	-	250	1	15	16	1/8	12	1.5	6	1.5	/	/	723	2200	3:37	6270	-105+	
2	50-13-15		200	1	15	16	1/8	12	1.5	6	1.5	/	1	727	1200	3:37	2200	-100"t	
3	54-12-15	205/0			15	16	1/8	12	1.5	6	1.5	~	/	723*	6200	3:37°	C200	0	
4	SV-12-15RGP	227	58	0751	15	16	1/8	12	1.5	6	1.5	/	1	773	6200	1	C200°	0	
5	54-11-15	719	50	0805	15	16	1/8	12	1.5	6	1.5	/	/	723	1200	7:27	200	-5"	
6	SV-17-15	216	50	0834	15	16	1/8	12	1.5	6	1.5	/	/	723 *	50	14:28	50	-80"	
7	50-16-15	243	50	0706	15	16	1/8	7	1.5	6	1.5		/	727 *	50	14:28	50	-65"	
8	SV-15-15	185	50	0928	15	(6	1/8	12	1.5	6	1.T	/	/	727	LZOU	3:27	2200	0	
9	54-11-5	242	50	0959	5	6	1/8	6/6	1.5/3.5	6/6		~	/	3040	- 4		Crow	0	
10	SV-12-5	216	50	1021	5	6	1/8	6/6	105/3.5	6/6	115/5.5	/	1	3040	COOP TO	3:02	2200	0	
11	SV-13-5	205	50	1056	5	6	1/8	6/6	1.5/3.5	6/6	1.5/3.5	/	~	3040	6000	3 202 *	Cros	6	
12	Su - 17 - 5	219	58	1235	5	6	1/8	6/6	1.5/35	6/6	1.5/3.5	/	/	3040	1000	3:02	2200	0	

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

Line 1: no sample / high vac. / tried 200,400,450 cc/min & no dissipation

Line 1: " "

FMS004 Revision: 3

Page 1 of 1

Revised: 1/15/2016 Effective: 1/25/2016

Log Sheet: Soil Vapor Sampling with Syringe

H&P Project #:	57051916-531	Date:	5-19-16	
Site Address:	1515 W-178th St. Gardena	Page:	2 of 2	
Consultant:	Stantec	H&P Rep(s):	C. Smith, T. Taylor	Reviewed:
Consultant Rep(s):	Matt		, ,	Scanned:
Equipment Info	Purge Volume Informa	ation	Leak Check Compound	1,1-DFA
Inline Gauge ID#: № 4	PV Amount: 3 pv PV Includes: 2	Tubing	A cloth saturated with LCC is placed around	□ 1,1,1,2-TFA
Pump ID#: 006	Ď.	Sand 40%	tubing connections and probe seal. This is done	□ IPA
	ď	Dry Bent 50%	for all samples unless otherwise noted.	☐ Other:

F	Sample In	nformatio	n		Probe Specs						Purge & Collection Information							
	Point ID	Syringe ID	Sample Volume (cc)	Sample Time	Probe Depth (ft)	Tubing Length (ft)	rubing	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Leak Check (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	
1	50-14-5	227	50	1306	5	6	1/8	6/6	1.5/3.5	6/6	1.5/5	/	/	3040	4	3:02	400	0
2	SV-16-5	207	50	1331	5	6	1/8	6/6	1.5/3.5	6/6	1.5/35		/	3040	1000	3:02	200	0
3	SV-15 - 5	243	50	1406	5	6	1/8		1.5/3.5	6/6	1.5/3.5		/	3040	1000	3:02	Crao	-10
4						Œ												
5																		
6																		
7																		
8	y and the																	
9																		
10		3																
11																	,	
12																		

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):