

TECHNICAL MEMORANDUM

To: Greg Tsujiuchi and Lisa Kranitz, City of Gardena

From: Mehul Champaneri and Rita Garcia

Date: July 7, 2023

Subject: Normandie Crossing Specific Plan, Local Transportation Assessment Peer

Review

Kimley-Horn has conducted a follow-up third-party peer review of the Project's Local Transportation Assessment (Ramboll US Corporation, July 2023) on behalf of the City of Gardena to verify that Kimley-Horn's March 3, 2023 third-party peer review Technical Memo (TM) recommendations have been incorporated. The revised July 2023 report addressed the third-party peer review comments and thus is in compliance with the TM recommendations. The analysis, as revised, meets the applicable provisions of CEQA and the State CEQA Guidelines and is adequate for inclusion in the Project EIR.

Please do not hesitate to contact Mehul Champaneri at 916.520.3573 or mehul.chamaneri@kimley-horn.com with any questions.

Normandie Crossing Specific Plan

Local Transportation Assessment

Prepared for: 16911 Normandie Associates, LLC

July 2023

LB21-0048

FEHR PEERS

Table of Contents

1. Introduction	
1.1 Project Description	1
1.2 Organization of the Report	1
2. Existing Setting	3
2.1 Existing Roadway Facilities	3
2.2 Existing Pedestrian and Bicycle Facilities	4
2.3 Existing Public Transit Facilities	5
3. Intersection Operations Analysis	6
3.1 Traffic Analysis Methodology	6
3.1.1 Intersections	6
3.1.2 Residential Street Segments	6
3.2 Intersection Analysis Scenarios	7
3.2.1 Analysis Criteria	7
3.3 Study Locations	9
3.4 Traffic Counts and Field Observations	9
3.5 Existing (2022) Intersections Level of Service	12
3.6 Opening Year (2027) Volumes and Intersections Level of S	ervice14
3.6.1 Areawide Traffic Growth	14
3.6.2 Related Projects Traffic Generation	14
3.6.3 Opening Year (2027) Intersections Level of Service	15
3.7 Project Traffic	19
3.7.1 Project Traffic Generation	19
3.7.2 Project Traffic Distribution and Assignment	19
3.8 Opening Year Plus Project Intersections Level of Service	22
3.9 Corrective Actions	22
3.10 Queuing Analysis	22
3.11 Traffic Signal Warrant Analysis	25
4. Residential Street Segment Analysis	28
5. Non-Motorized Modes Analysis	30
5.1 Effects on Active Transportation	30
5.2 Effects on Transit	31

6. Summary and Conclusions	32
List of Figures	
Figure 1: Project Site Plan	2
Figure 2: Study Area with Analyzed Intersections and Street Segments	
Figure 3: Related Projects Map	
Figure 4: Project Trip Distribution	
List of Tables	
Table 1. HCM LOC Deficitions	0
Table 1: HCM LOS Definitions	
Table 2: List of Study Intersections and Street Segments	
Table 3: Existing Intersection Levels of Service	
Table 4: Related Projects	
Table 5: Opening Year (2027) Intersections Level of Service	
Table 6: Project Trip Generation Estimates	
Table 7: Opening Year Plus Project Intersections Level of Service	
Table 8: 95 th Percentile Queuing Analysis	
Table 9: Residential Street Segment Analysis	29
Appendices	

Appendix A: LTA Scoping Memorandum

Appendix B: Traffic Counts

Appendix C: Traffic Volumes and Lane Configurations

Appendix D: LOS and Queuing Worksheets

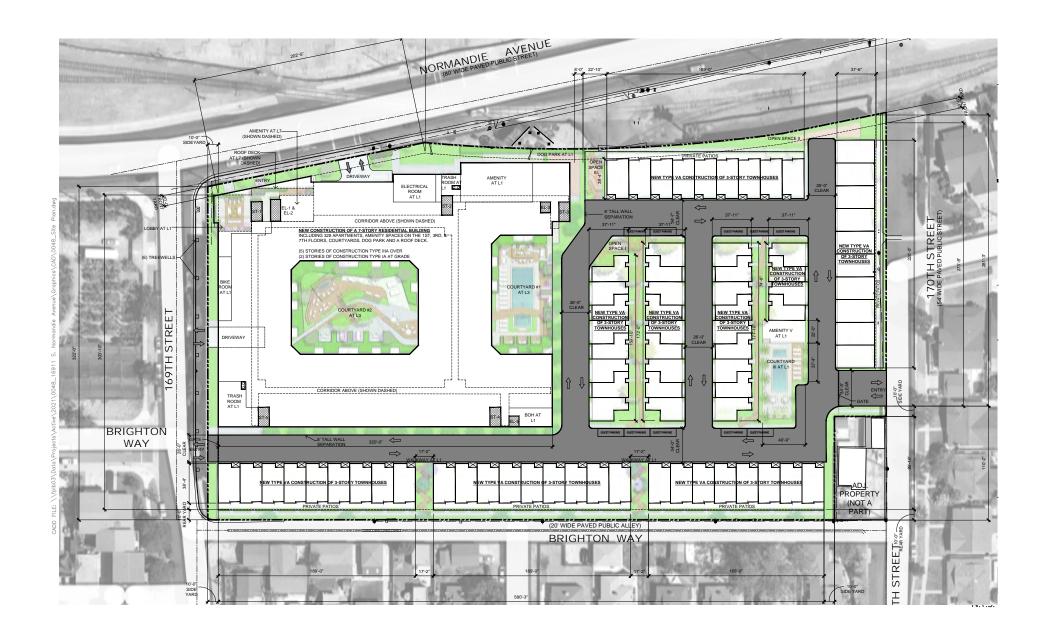
Appendix E: Traffic Signal Warrant Analysis Worksheets

1. Introduction

This report presents the results of the non-CEQA Local Transportation Assessment (LTA) conducted by Fehr & Peers for the proposed Normandie Crossing Specific Plan ("Project") in the City of Gardena. The analysis identifies the effects of the proposed project on the surrounding transportation system. This LTA was conducted in accordance with the requirements of the City of Gardena's Senate Bill 743 Implementation Transportation Analysis Updates. While CEQA requirements have changed and level of service (LOS) no longer constitutes CEQA impacts, an LTA may inform decision makers on the overall effects of a project.

1.1 Project Description

The proposed Project is located at 16829, 16835, and 16907 Normandie Avenue, bound by Normandie Avenue to the east, 170th Street to the south, Brighton Way (alleyway) to the west, and 169th Street to the north. The Project will replace 106,100 square feet (sf) of active warehousing uses with 75 low-rise townhomes and 328 dwelling units within a single 7-story mid-rise apartment building. Access to the Project Site will be provided by the following four driveways:


- Driveway 1 serves the apartment building's parking garage from 169th Street, west of Normandie Avenue.
- Driveway 2 is a right-in/right-out only driveway that also serves the apartment building's parking garage from southbound Normandie Avenue. The Project will install a 125-foot median along Normandie Avenue surrounding the Union Pacific railroad tracks (north and south of the tracks) to prevent left-turns into and out of the Project from Normandie Avenue.
- Driveway 3 serves the townhomes from 170th Street.
- Driveway 4 also serves the townhomes from 169th Street.

Internal roadways link Driveways 3 and 4 to all townhomes, but do not connect to the apartment building garage. The Project will provide 399 parking spaces within an enclosed garage on the first two levels of the apartment building and 150 attached garage parking spaces, with 10 guest parking spaces for the townhomes. **Figure 1** shows the Project site plan.

1.2 Organization of the Report

This report is divided into five chapters, including this introduction. Chapter 2 presents the existing setting in which the Project is located. Chapter 3 presents the intersection operations analysis. Chapter 4 provides a residential street segment analysis. Chapter 5 summarizes the results of the study.

Project Site Plan Normandie Apartments Project

2. Existing Setting

This chapter describes the existing setting for transportation, including a discussion of existing roadways, bicycle and pedestrian facilities, transit service, and roadway safety conditions. The transportation system serving this area is a complex, built-out, multimodal network designed to carry both people and goods, consisting of roadways, bicycle facilities, sidewalks, and public transit (via bus). The roadway and sidewalk network in the vicinity of the Project site is generally well-developed and complete.

2.1 Existing Roadway Facilities

The street network in Gardena is primarily gridded with good connectivity. Arterial streets in the study area generally provide two to three vehicle travel lanes in each direction, with left-turn pockets at most signalized intersections and right-turn pockets at some intersections. Posted travel speeds in the study area range from 25 to 45 miles per hour (mph). As described in detail below and illustrated in **Figure 2**, regional access to the Project site is provided by Normandie Avenue and a network of arterial and collector streets. The arterial street network that serves the proposed project area includes Artesia Boulevard. The collector streets include Normandie Avenue, Gardena Boulevard, and 166th Street. The local streets include 169th Street and 170th Street. The following describes the key roadway facilities that serve the project site:

- <u>Normandie Avenue</u> Normandie Avenue is a north/south Major Collector with two lanes in each direction that runs through the City of Gardena. Normandie Avenue is designated as a truck route within the City of Gardena. Left-turn lanes are provided at major intersections. The posted speed limit is 35 mph. On-street parking is prohibited on both sides of the street. The Union Pacific Torrance Branch right-of-way (ROW) crosses Normandie Avenue and runs along the eastern frontage of the Project Site.
- Artesia Boulevard Artesia Boulevard is an east/west Arterial with three to four lanes in each
 direction that is under local jurisdiction. Artesia Boulevard transitions into SR-91 (Gardena Freeway)
 east of Vermont Avenue under Caltrans jurisdiction. Artesia Boulevard contains a raised median
 and the posted speed limit is 45 mph. There are left-turn pockets at all intersections. On-street
 parking is prohibited on both sides of Artesia Boulevard.
- <u>Gardena Boulevard</u> Gardena Boulevard is an east-west Collector that runs through Gardena with
 a short jog at Normandie Avenue. Gardena Boulevard has one lane in each direction and a posted
 speed of 30 mph east of Normandie Avenue and 25 mph west of Normandie Avenue. On- street
 parking is permitted on both sides of the street, with angled parking provided east of Normandie
 Avenue.
- <u>166th Street</u> 166th Street is an east-west street that runs from Gramercy Place in Torrance to Berendo Avenue in Gardena. 166th Street is a local street except for the segment between Western

Avenue and Normandie Avenue, where it is a Collector. On- street parking is permitted on both sides of the street, and the posted speed limit is 30 mph west of Normandie Avenue and 25 mph east of Normandie Avenue. A raised median is provided east of Normandie Avenue that contains the right of way and double tracks for the Union Pacific Railroad Torrance Branch.

- <u>169th Street</u> 169th Street is an east/west local street that runs from Denker Avenue to Normandie Avenue with one lane in each direction. On-street parking is generally provided on both sides of 169th Street.
- <u>170th Street</u> 170th Street is an east/west local street that runs from Denker Avenue to Normandie Avenue where it dead ends and Normandie Avenue to Vermont Avenue with one lane in each direction. 170th Street west of Normandie Avenue does not connect to Normandie Avenue or the segment east of it. On-street parking is generally provided on both sides of 170th Street and the posted speed limit is 25 mph.
- <u>Brighton Way</u> Brighton Way is a north/south alleyway that runs from 169th Street to 170th street with a shared lane for each direction. On-street parking is not provided.

2.2 Existing Pedestrian and Bicycle Facilities

Existing sidewalks are provided along the project frontage and within a continuous and complete pedestrian network in the surrounding area. Sidewalks along the south side of 169th Street are discontinuous for a short segment from just west of the project site to Halldale Avenue. Sidewalks are also not present on Brighton Way, which is a public alleyway. Marked crosswalks, curb ramps, and pedestrian signals are provided at the nearest signalized intersections along Normandie Avenue at 166th Street and 170th Street, which provides direct access to bus transit stops and surrounding land uses.

Separated or protected bicycle facilities are not currently provided along Normandie Avenue along the project site. According to the South Bay Bicycle Master Plan,¹ Normandie Avenue is designated as a bike route (Class III) from 182nd Street to 170th Street. Additionally, 166th Street, 170th Street and Gardena Boulevard are designated as bike routes (Class III), but not on segments directly adjacent to the project site.

The following future Bicycle Friendly Street segment is proposed in the South Bay Bicycle Master Plan as a prioritized project in Gardena that is directly adjacent to the project site and may be implemented by the City in the future:

• 170th Street from Denker Avenue to Vermont Avenue (0.8 miles)

¹ Alta Planning + Design, South Bay Bicycle Master Plan prepared for Los Angeles County Bicycle Coalition and South Bay Bicycle Coalition, available at https://southbaybicyclecoalition.org/sbbcplus-master-plan/.

4

2.3 Existing Public Transit Facilities

The project site is located within a ¼-mile of various bus stops and is served by transit service via the City of Gardena's Transit Service, GTrans. The Project is also located approximately 0.9 miles from the Harbor Gateway Transit Center. The following bus routes provide service within a ¼-mile walking distance of the project site:

- **Route 1X (GTrans)**: Connects the LA Metro C Line Redondo Beach Station and the City of Gardena to Downtown Los Angeles. This line runs express service between Rosecrans Avenue and Downtown Los Angeles. Bus stops within a ¼ mile include: 166th Street and Brighton Avenue (eastbound and westbound).
- **Route 4 (GTrans)**: Connects the Harbor Gateway Transit Center to various destinations in Gardena and Hawthorne via Normandie Avenue, 135th Street, Van Ness Avenue, and Marine Avenue. Bus stops within a ¼-mile include: Normandie Avenue and 170th Street (southbound and northbound). Service on this line was discontinued due to the COVID-19 Pandemic and it is not known at this time whether service would be restarted.

3. Intersection Operations Analysis

3.1 Traffic Analysis Methodology

3.1.1 Intersections

The analysis of roadway operations performed for this study is based on procedures presented in the *Highway Capacity Manual 6th Edition* (HCM 6), published by the Transportation Research Board in 2016. The operations of roadway facilities are described with the term level-of-service (LOS). LOS is a qualitative description of traffic flow based on such factors as speed, travel time, delay, and freedom to maneuver. Six levels are defined from LOS A, which is the least congested operating conditions, to LOS F, which is the most congested operating conditions. LOS E represents "at-capacity" operations. Operations are designated as LOS F when volumes exceed capacity, resulting in stop-and-go conditions. The methodologies for signalized and unsignalized intersections are described below. The City of Gardena no longer has CEQA significant impact thresholds according to intersection LOS in accordance with state law.

The method described in Chapter 19 of HCM 6 was used to prepare the LOS calculations for the signalized and unsignalized study intersections. This LOS method analyzes a signalized intersection's operation based on average control delay per vehicle. Control delay alone is used to characterize LOS for the entire intersection or an approach. Control delay includes the initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The average control delay for intersections was calculated using the Synchro 11 analysis software and is correlated to a LOS designation as shown in **Table 1**. For unsignalized intersections, the control delay and LOS for the worst performing approach is used.

In addition, intersections can be evaluated by the Project's effects on queuing. Although not typically required by the City of Gardena, a turn lane queuing analysis was performed at the unsignalized intersection of Normandie Avenue and 169th Street.

3.1.2 Residential Street Segments

The analysis of residential street segments is required by the City of Gardena where projects have direct access to neighborhood residential streets. This assessment is conducted by estimating the number of project trips expected to travel on studied street segments on a daily basis and during the AM and PM peak hours. This assessment will allow the City to consider the need (if any) for relevant traffic calming projects.

3.2 Intersection Analysis Scenarios

The operations for the study intersections were evaluated during the weekday AM and PM peak hours for the following scenarios:

- Existing (2022) Conditions The analysis of existing traffic conditions was based on 2022 intersection traffic counts collected while local schools were in session. Existing conditions are assumed to include the current warehouse use occupying the site. This analysis is intended to provide a basis for the remainder of the study. It also assumes that traffic levels around the Los Angeles region that were affected by the COVID-19 Pandemic have stabilized in 2022 since schools have resumed in-person instruction and remaining restrictions have been lifted.
- Opening Year (2027) No Project Conditions Future traffic volumes for the anticipated opening
 year of the project were projected by increasing the Existing (2022) traffic volumes using an annual
 growth factor of one percent per year to account for ambient growth in the area, as well as the
 inclusion of traffic from specific related development projects. This scenario does not include any
 project-generated traffic.
- Opening Year (2027) Plus Project Conditions Traffic projections from Opening Year (2027) No Project Conditions plus the addition of project-generated traffic.

3.2.1 Analysis Criteria

The analysis of future conditions compares the "no project" condition against conditions that include project-generated traffic assuming full build-out and occupancy. This approach determines whether the addition of project traffic is expected to worsen delay beyond the City's non-CEQA LOS requirements on local roadways. The City of Gardena's non-CEQA analysis criteria for signalized intersections is as follows:

- To the extent feasible, maintain traffic flows at non-residential, signalized intersections at LOS E during peak rush hours.
- To the extent feasible, maintain traffic flows at residential signalized intersections at LOS D during peak rush hours.

The City of Gardena does not have established criteria to evaluate unacceptable levels of traffic on residential street segments. Also, the City requires that projects be reviewed for potential conflicts with plans and policies related to active transportation modes (walking, biking, transit).

TABLE 1 HCM LEVEL OF SERVICE DEFINITIONS

		Signalized	Unsignalized
LOS	Definition	Delay	Delay
		(Seconds)	(Seconds)
А	Operations with very low delay occurring with favorable progression and/or short cycle length.	<u><</u> 10.0	<u><</u> 10.0
В	Operations with low delay occurring with good progression and/or short cycle lengths.	> 10.0 to 20.0	>10.0 to 15.0
С	Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.	> 20.0 to 35.0	>15.0 to 25.0
D	Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop and individual cycle failures are noticeable.	> 35.0 to 55.0	>25.0 to 35.0
E	Operations with high delay values indicating poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.	> 55.0 to 80.0	>35.0 to 50.0
F	Operation with delays unacceptable to most drivers occurring due to over saturation, poor progression, or very long cycle lengths.	> 80.0	>50.0
Source: Highway Capacity	Manual (Transportation Research Board, 2016).		

3.3 Study Locations

The scope and selection of study intersections and residential street segments was developed in conjunction with City staff and documented in the LTA Scoping Memorandum, dated February 7, 2022. Five (5) study intersections and two (2) residential street segments were selected to be analyzed, as shown in **Table 2** and illustrated in **Figure 2**. All study intersections except the intersection of Normandie Avenue and 170th Street are considered non-residential signalized intersections. The LTA Scoping Memorandum can be found in **Appendix A**.

3.4 Traffic Counts and Field Observations

Intersection turning movement and street segment counts were collected in March 2022, while local schools were in session. Counts were collected during the AM and PM peak periods of 7-9 AM and 4-6 PM, respectively. Although the COVID-19 Pandemic resulted in both temporary and permanent shifts in traffic patterns, pandemic-related restrictions that could affect travel have largely expired and/or stabilized in 2022. Therefore, these newly collected traffic counts represent conditions that are as realistic and typical as possible. Traffic counts can be found in **Appendix B**.

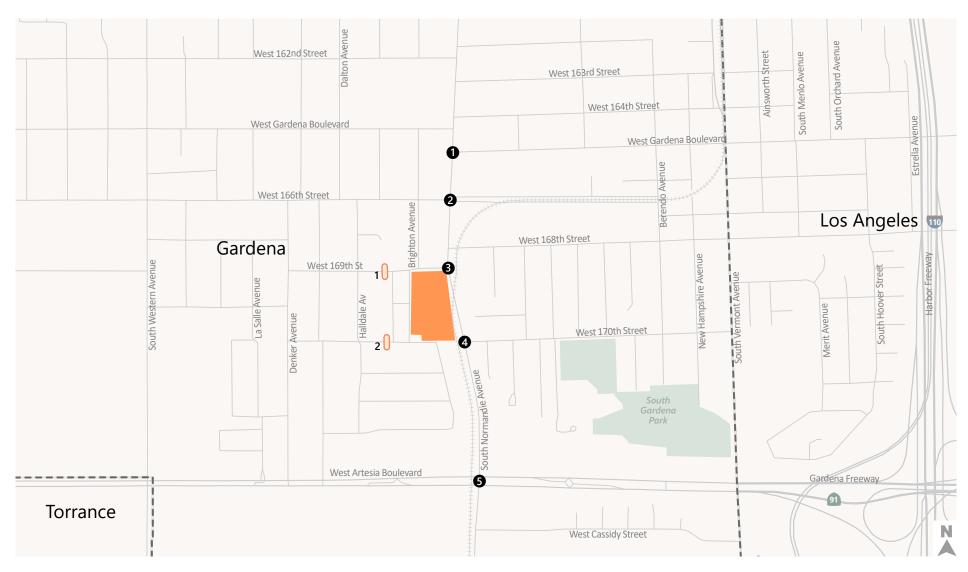

Field observations were conducted at study locations in March 2022 at the same time counts were collected.

TABLE 2 LIST OF STUDY INTERSECTIONS AND STREET SEGMENTS

		Jurisdiction		
Normandie Avenue	Gardena Boulevard	Gardena		
Normandie Avenue	166th Street	Gardena		
Normandie Avenue	169th Street	Gardena		
Normandie Avenue	170th Street	Gardena		
Normandie Avenue	Artesia Boulevard	Gardena		
	Normandie Avenue Normandie Avenue Normandie Avenue	Normandie Avenue 166th Street Normandie Avenue 169th Street Normandie Avenue 170th Street		

ID	ID Segment						
1	169th Street west of Brighton Avenue	Gardena					
2	170th Street west of Brighton Avenue	Gardena					

Project Site

Study Intersections

Study Segments

Cities

Figure 2

Study Intersections and Study Segments Normandie Apartments Project

3.5 Existing (2022) Intersections Level of Service

Existing lane configurations and signal controls were obtained through field observations and Google Street View imagery. They can be found in **Appendix C**.

The results of the existing LOS analysis are presented in **Table 3**. Corresponding LOS calculation sheets are included in **Appendix D**. The results of the LOS calculations indicate that all study intersections operate at LOS D or better during the weekday AM and PM peak hours.

TABLE 3 EXISTING (2022) CONDITIONS INTERSECTION LEVELS OF SERVICE

NO.	INTERSECTION	CONTROL TYPE	PEAK HOUR	EXISTING		
	in i	CONTROL	1 LA III OO K	DELAY (S)	LOS	
1	Normandie Av &	Signalized	AM	8.2	Α	
	Gardena Bl	Signalized	PM	7.0	Α	
2	Normandie Av &	Signalized	AM	10.3	В	
	166th St	Signalized	PM	10.6	В	
3	Normandie Av &	TWSC	AM	20.3	С	
	169th St	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PM	21.5	С	
4	Normandie Av &	Signalized	AM	5.6	Α	
	170th St	Signalized	PM	5.2	Α	
5	Normandie Av &	Cianalizad	AM	40.8	D	
	Artesia Bl	Signalized	PM	39.3	D	

[[]a] Intersections were analyzed using HCM methodologies per City of Gardena's SB 743 Implementation, Transportation Analysis Updates. LOS and delay for unsignalized intersections were reported using the worst performing approach.

[[]b] TWSC=Two-Way Stop-Controlled Intersection

3.6 Opening Year (2027) Volumes and Intersections Level of Service

To evaluate the potential effects of the proposed Project on the local street system, it was necessary to develop estimates of Opening Year traffic conditions both with and without the Project. Opening Year traffic volumes without the Project are first estimated, representing the Opening Year conditions. The traffic generated by the proposed Project is then estimated and separately assigned to the surrounding street system. The sum of the Opening Year and Project-generated traffic represents Opening Year Plus Project traffic conditions.

The Opening Year traffic projections reflect changes in traffic from two primary sources: background or ambient growth in the existing traffic volumes to reflect the effects of overall regional growth both in and outside of the study area, and traffic generated by specific projects in, or in the vicinity of, the study area. These factors are described below.

3.6.1 Areawide Traffic Growth

To provide a conservative estimate, traffic volumes in the vicinity of the study area were projected to increase at a rate of about 0.4% per year to the Year 2027. With the assumed completion date of 2027, the existing 2022 traffic volumes were adjusted upward by a factor of 0.4% per year for five years to reflect areawide regional growth up to Year 2027. The growth factor was derived from the SCAG Travel Demand Model for the City of Gardena.

3.6.2 Related Projects Traffic Generation

The second major source of traffic growth in the study area is from specific cumulative development projects, also called related projects, expected to be built in the vicinity of the proposed Project Site prior to Project opening. Data describing cumulative projects in the area was developed based on information obtained from the City of Gardena. A total of 7 related projects were identified in the study area, within a mile of the project site, and are estimated to generate 169 trips during the AM peak hour and 203 trips during the PM peak hour, as summarized in **Table 4**. The application of these trips to the study intersections was made on top of the 1% ambient growth projections, for a further conservative estimate of future traffic conditions. It was assumed that all 7 related projects would be completed and occupied by the opening year of this Project. Trip generation estimates for each of the cumulative projects were developed according to ITE (11th Edition) rates. **Figure 3** displays the locations of the related projects. **Appendix C** shows the assignment of this traffic at each of the study intersections. Related projects traffic was distributed across study intersections using assumptions found in their respective transportation studies or the travel demand model.

3.6.3 Opening Year (2027) Intersections Level of Service

The results of the Opening Year (2027) LOS analysis are presented in **Table 5**. Corresponding LOS calculation sheets are included in **Appendix D**. The results of the LOS calculations indicate that all study intersections operate at LOS D or better during the weekday AM and PM peak hours.

TABLE 4 16911 NORMANDIE PROJECT RELATED PROJECTS

			Land Use		Trip Generation						
No.	Project Location	City		Size		AM			PM		
					Daily	IN	OUT	TOTAL	IN	OUT	TOTAL
1	1333 W 168th St	Gardena	Townhomes	3 du	22	0	1	1	1	1	2
2	1348 W 168th St	Gardena	Townhomes	9 du	65	1	3	4	3	2	5
2	1341 W Gardena Bl	Gardena	Apartments	14 du	205	7	6	13	10	10	20
3	1341 W Galdella bi	Gardena	Commercial	3 ksf	203	1	O				20
4	1031 Magnolia Av	Gardena	Townhomes	6 du	43	1	2	3	2	1	3
5	1450 W Artesia Bl	Gardena	Self Storage & Warehousing	258 ksf	374	14	9	23	18	21	39
6	15717 & 15725 Normandie Av	Gardena	Townhomes	30 du	216	4	10	14	10	7	17
7	1610 W Artersia Bl	Gardena Apartments		300 du	1,362	26	85	111	71	46	117
				Total:	925	53	116	169	115	88	203

Notes:

du = dwelling unit; ksf = one-thousand square feet

Related projects list based on information provided by City of Gardena and City of Los Angeles dated June 2023.

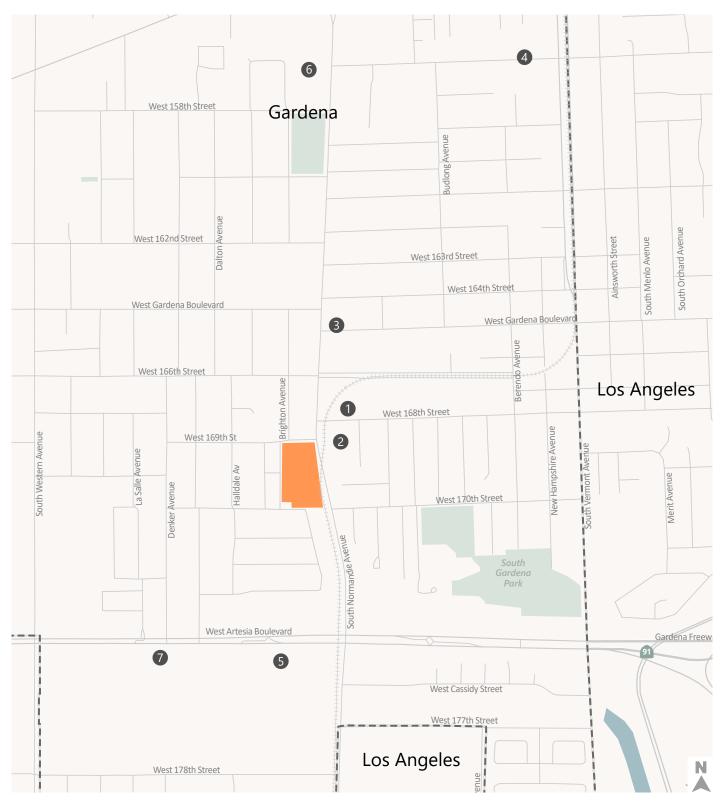


Figure 3

Related Projects Normandie Apartments Project

TABLE 5 OPENING YEAR (2027) CONDITIONS INTERSECTION LEVELS OF SERVICE

NO.	INTERSECTION	CONTROL TYPE	PEAK HOUR	OPENING YEAR (2027)		
110.	INTERSECTION	CONTROLITIE	I EAR HOOK	DELAY (S)	LOS	
1	Normandie Av &	Cianalizad	AM	8.1	А	
	Gardena Bl	Signalized	PM	7.1	Α	
2	Normandie Av &	Ciamalia ad	AM	10.2	В	
	166th St	Signalized	PM	11.7	В	
3	Normandie Av &	TMCC	AM	18.7	С	
	169th St	TWSC	PM	22.7	С	
4	Normandie Av &	Ciamalia ad	AM	5.6	Α	
	170th St	Signalized	PM	5.3	Α	
5	Normandie Av &	C:	AM	41.5	D	
	Artesia Bl	Signalized	PM	40.5	D	

Intersections were analyzed using HCM methodologies per City of Gardena's SB 743 Implementation, Transportation Analysis Updates. LOS and delay for unsignalized intersections were reported using the worst performing approach.

[[]b] TWSC=Two-Way Stop-Controlled Intersection

3.7 Project Traffic

The development of trip generation estimates for the Project was a 3-step process: trip generation, trip distribution, and traffic assignment.

3.7.1 Project Traffic Generation

As indicated previously, the Project would involve the demolition of approximately 106,100 sf of existing warehousing uses and its replacement with approximately 75 low-rise townhomes and 328 apartment dwelling units. **Table 6** presents the trip rates used to estimate trip generation for the Project. The ITE 11th Edition Trip Generation Manual was used to determine trip generation estimates for the proposed land uses. The ITE Multifamily Housing (Mid-Rise) rate (Land Use #221) was used for the proposed apartments, while the ITE Multifamily Housing (Low-Rise) rate (Land Use #220) was used for the proposed townhomes. The ITE Warehousing rate (Land Use #150) was used for the existing use as a credit. Based on the presence of transit routes near the site and the close proximity to other destinations, a combined 5% walking, biking, and transit credit was taken for the proposed land uses.

After including the credits for existing uses and non-automotive travel, the Project is estimated to generate 1,715 daily trips, 126 trips (20 inbound/106 outbound) in the AM peak hour, and 138 trips (92 inbound/46 trips outbound) in the PM peak hour.

3.7.2 Project Traffic Distribution and Assignment

The geographic distribution of trips generated by the Project is dependent on characteristics of the street system serving the Project site, the level of accessibility of routes to and from the proposed Project site, and the locations of employment and residential areas to which patrons of the Project would be drawn. The trip distribution is based on trip distribution information from the Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP) travel demand model and finalized through conversations with city staff to ensure that the assumptions are realistic and vetted. The distribution of traffic is illustrated in **Figure 4**. Project traffic (depending on residential land use type) would enter the site from the four driveways as described in Chapter 1.

The traffic expected to be generated by the proposed Project was assigned to the street network using the distribution pattern shown in Figure 4. **Appendix C** shows the Project traffic assigned at the study intersections.

TABLE 6 16911 NORMANDIE APARTMENTS PROJECT DAILY & PEAK HOUR VEHICLE TRIP GENERATION ESTIMATES

	ITE Land	Trip Generation Rates [a]							Estimated Trip Generation							
Land Use	Use Code	Size	Daily	Al	M Peak Ho	ur	PI	M Peak Ho	ur	Daily	AM I	Peak Hour	Trips	PM I	Peak Hour	Trips
	ose code		Dally	Rate	In%	Out%	Rate	In%	Out%	Dally	In	Out	Total	ln	Out	Total
PROPOSED PROJECT																
Townhomes (Low-Rise) Less: Walk/Bike/Transit Adjustment [b] Net External Vehicle Trips	220	75 du	6.74 5%	0.4 5%	24%	76%	0.51 <i>5%</i>	63%	37%	506 <i>(25)</i> 481	7 0 7	23 (1) 22	30 (1) 29	24 (1) 23	14 <i>(1)</i> 13	38 <i>(2)</i> 36
Apartments (Mid-Rise) Less: Walk/Bike/Transit Adjustment [b] Net External Vehicle Trips	221	328 du	4.54 5%	0.37 5%	23%	77%	0.39 <i>5%</i>	61%	39%	1,489 <i>(74)</i> 1,415	28 (1) 27	93 <i>(5)</i> 88	121 <i>(6)</i> 115	78 <i>(4)</i> 74	50 (3) 47	128 <i>(7)</i> 121
TOTAL PROJECT EXTERNAL TRIPS		403 du								1,896	34	110	144	97	60	157
EXISTING USE ADJUSTMENT																
Warehousing	150	106.1 ksf	1.71	0.17	77%	23%	0.18	28%	72%	181	14	4	18	5	14	19
NET INCREMENTAL EXTERNAL TRIPS										1,715	20	106	126	92	46	138

Notes:

[[]a] Source: Institute of Transportation Engineers (ITE), Trip Generation, 11th Edition, 2021, unless otherwise noted.

[[]b] Although GTrans Line 4 is not currently providing service to/from the Harbor Gateway Transit Center due to the COVID-19 Pandemic, it is expected that this service would return in the future. Bus service provided by GTrans Lines 1X and 4 connect to major transit hubs and destinations, which informs the combined walking, biking, and transit trip generation credit. Base ITE rates do not take into account the usage of other modes of transportation.

Project Site

Study Intersections

Study Segments

Cities

Figure 4

Trip Distribution Normandie Apartments Project

3.8 Opening Year Plus Project Intersections Level of Service

This section describes the analysis of potential effects on the roadway system due to future increases in traffic plus traffic generated by the project. The Opening Year (2027) Plus Project roadway network is the same network assumed under the Opening Year (2027) scenario.

The results of the Opening Year (2027) LOS analysis are presented in **Table 7**. Corresponding LOS calculation sheets are included in **Appendix D**. The results of the LOS calculations indicate that all study intersections operate at LOS D or better during the weekday AM and PM peak hours with the exception of the unsignalized intersection of Normandie Avenue and 169th Street, which is projected to operate at LOS E in the AM and PM peak hour due to the eastbound left-turn movement. The City of Gardena does not have non-CEQA analysis criteria for unsignalized intersections. It is generally typical for minor street stop-controlled approaches at unsignalized intersections to operate at LOS E/F (and higher amounts of delay) due to the nature and hierarchy of the street network, especially for drivers making left-turns.

3.9 Corrective Actions

Although there are no analysis criteria for unsignalized intersections in the City of Gardena, the City's guidance refers to the potential to install traffic signals at unsignalized intersections where traffic volumes are high enough to meet traffic signal warrants. A traffic signal warrant analysis for the unsignalized intersection of Normandie Avenue and 169th Street can be found in Section 3.11. Alternatively, the City of Gardena could consider restricting left-turn movements from 169th Street, which would reduce delay.

3.10 Queuing Analysis

A queuing analysis was performed for the unsignalized intersection of Normandie Avenue and 169th Street. **Table 8** presents AM and PM peak hour 95th percentile queues for non-free-flow turning movements. The queues are provided on the same sheets as the LOS and delay for this intersection in **Attachment D**. As shown in Table 8, Project traffic is not expected to cause any non-free-flow turning movements to exceed turn storage capacity.

TABLE 7 OPENING YEAR PLUS PROJECT CONDITIONS INTERSECTION LEVELS OF SERVICE

NO.	INTERSECTION	CONTROL TYPE	PEAK HOUR	OPENING Y	'EAR (2027)	OPENING PRO	DELAY	
				DELAY (S)	LOS	DELAY (S)	LOS	INCREASE
1	Normandie Av &	Signalized	AM	8.1	Α	8.2	Α	0.1
	Gardena Bl	Signalized	PM	7.1	Α	7.5	Α	0.4
2	Normandie Av &	Cianalizad	AM	10.2	В	10.3	В	0.1
	166th St	Signalized	PM	11.7	В	11.8	В	0.1
3	Normandie Av &	TWSC	AM	18.7	С	36.6	E	17.9
	169th St	TWSC	PM	22.7	C	39.7	E	17.0
4	Normandie Av &	Cianalizad	AM	5.6	Α	5.6	Α	0.0
	170th St	Signalized	PM	5.3	Α	5.3	Α	0.0
5	Normandie Av &	Cianadia ad	AM	41.5	D	42.6	D	1.1
	Artesia Bl	Signalized	PM	40.4	D	41.5	D	1.1

[[]a] Intersections were analyzed using HCM methodologies per City of Gardena's SB 743 Implementation, Transportation Analysis Updates. LOS and delay for unsignalized intersections were reported using the worst performing approach.

[[]b] TWSC=Two-Way Stop-Controlled Intersection

TABLE 8 PROJECT QUEUING ANALYSIS

NO.	INTERSECTION	CONTROL TYPE	MOVEMENT	STORAGE LENGTH (FT) [a]	PEAK HOUR	EXISTING 2022 (FT)	OPENING YEAR 2027 (FT)	OPENING YEAR PLUS PROJECT 2027 (FT)
	3 Normandie Av & 169th	9th Unsignalized	NBL	100	AM	25	25	25
2					PM	25	25	25
3			EBLTR	210 [ь]	AM	50	50	100
					PM	25	25	50

FT Feet

[[]a] An additional 60 to 90 feet of storage is typically provided in the taper area outside of the through lane, which is not reflected in the storage length above.

[[]b] Eastbound approach storage length measured from intersection to Project Driveway per site plans.

3.11 Traffic Signal Warrant Analysis

A traffic signal warrant analysis was conducted at the intersection of Normandie Avenue & 169th Street. Traffic volumes, as presented in **Appendix A**, were used to prepare signal warrant analyses under Existing (2022) conditions.

The traffic signal warrant analyses were conducted in accordance with the procedures described in Chapter 4C of the California Manual on Uniform Traffic Control Devices 2014 (CAMUTCD). The CAMUTCD contains nine (9) possible traffic signal warrants. Below is a summary of each traffic signal warrant, their applicability to the Project, and whether or not the applicable warrant is met under the Opening Year Plus Project scenario. In accordance with the CAMUTCD, the satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal. **Appendix E** provides the related worksheets for each traffic signal warrant.

Warrant 1, Eight-Hour Vehicular Volume

This warrant consists of meeting either Condition A or Condition B of Section 4C.02 of the CAMUTCD. Condition A is intended for application at locations where a large volume of intersecting traffic is the principal reason to consider installing a traffic control signal. Condition B is intended for application at locations where Condition A is not satisfied and where the traffic volume on a major street is so heavy that traffic on a minor intersecting street suffers excessive delay or conflict in entering or crossing the major street. Based on the worksheet calculations in Appendix E, Warrant 1 is not met under Existing (2022) conditions. This warrant is also not expected to be met under Opening Year Plus Project conditions. Minor street existing volumes would have to be more than double or triple for eight hours on a typical day in order to meet Warrant 1. Estimated peak hour minor street approach volumes under the Opening Year Plus Project scenario are also less than the minor street volume threshold to meet this warrant.

Warrant 2, Four-Hour Vehicular Volume

This signal warrant is intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal. Based on the worksheet calculations in Appendix E, Warrant 2 is not met under Existing (2022) conditions. This warrant is also not expected to be met under Opening Year Plus Project conditions either due to minor street volumes not meeting thresholds for four hours on a typical day. While the minor street approach volumes do exceed Warrant 2 thresholds during 1-hour in the morning under Opening Year Plus Project conditions, existing volume data for this eastbound approach shows a substantial drop in volumes during other hours of the day. Even after accounting for ambient growth and Project traffic, the eastbound minor street approach volume is not expected to meet Warrant 2 thresholds for four hours on a typical day.

Warrant 3, Peak Hour

This signal warrant is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an average day, the minor-street traffic suffers undue delay when entering or crossing the major street. Based on the worksheet calculations in Appendix E, Warrant 3 is not met under Existing (2022) conditions. Although Category B (over 100 vehicles per hour on the minor street) of Warrant 3 is satisfied during the Opening Year Plus Project AM scenario, this warrant is still not met under Opening Year Plus Project due to the intent of Warrant 3. Warrant 3 shall be applied only in unusual cases, such as industrial and office complexes or manufacturing plants that attract and discharge large numbers of vehicles over a short period of time.

Warrant 4, Pedestrian Volume

This signal warrant is intended for application where the traffic volume on a major street is so heavy that pedestrians experience excessive delay in crossing the major street. Warrant 4 was not performed at this intersection due to low pedestrian crossing volumes during peak periods as shown in the intersection counts. Existing peak hour intersection counts show less than five (5) pedestrians crossing any roadway leg during either peak hour, which is substantially less than the 75-133 crossings per hour that are necessary to meet this warrant. The Project is not expected to generate sufficient pedestrian crossing volumes to satisfy this warrant.

Warrant 5, School Crossing

This signal warrant is intended for application when schoolchildren crossing the major street is the principal reason to consider installing a traffic control signal. This warrant is not applicable to this intersection because the Project and the intersection of Normandie Avenue and 169th Street is not located in close proximity to a school and the intersection is not an established school crossing.

Warrant 6, Coordinated Signal System

This signal warrant considers progressive movement in a coordinated signal system. This sometimes necessitates installing traffic control signals at intersections where they would not otherwise be needed in order to maintain proper platooning of vehicles. This warrant is not applicable to this intersection, as the intersection analysis shows intersections along Normandie Avenue operating at acceptable LOS and without heavy congestion.

Warrant 7, Crash Experience

This signal warrant is intended for application where the severity and frequency of crashes are the principal reasons to consider installing a traffic control signal. Traffic collision data was obtained for this intersection using the CHP's Statewide Integrated Traffic Records System (see Appendix Item E). Because

Normandie Crossing Specific Plan Local Transportation Assessment July 2023

there were fewer than five (5) crashes at the intersection of Normandie Avenue and 169th Street in the prior five (5) years, this warrant is not met.

Warrant 8, Roadway Network

This signal warrant considers installing a traffic control signal to encourage concentration and organization of traffic flow on a roadway network. Although volumes entering this intersection are expected to exceed thresholds for Warrant 8 as shown in Appendix E, this warrant is not met due to the requirement that both streets be considered major routes. 169th Street is not considered a principal street or major route for through traffic.

Warrant 9, Intersection Near a Grade Crossing

This signal warrant is intended for use at a location where none of the conditions described in the other eight traffic signal warrants are met, but the proximity to the intersection of a grade crossing on an intersection approach controlled by a STOP or YIELD sign is the principal reason to consider installing a traffic control signal. Warrant 9 applies to situations where a grade crossing crosses the minor street and the minor street approach is controlled by a STOP or YIELD sign. At the intersection of Normandie Avenue and 169th Street, no traffic control is provided for Normandie Avenue. Near this intersection, the railroad tracks cross the major street (Normandie Avenue). Therefore, this warrant was not performed.

<u>Summary</u>

Based on the signal warrant analysis performed above, a traffic signal is not warranted under Existing (2022) conditions at the intersection of Normandie Avenue and 169th Street. Based on the Project's expected traffic and areawide traffic projections, a traffic signal is also not expected to meet warrants under the Opening Year Plus Project scenario. The City of Gardena should continue to monitor traffic conditions and safety after the Project is built.

The decision to install a signal should not be based solely upon the warrants, since the installation of signals can lead to increases in the frequency of collisions (especially rear-end collisions) according to the CAMUTCD. Should the City decide to install a traffic signal at Normandie Avenue and 169th Street, further study should be conducted to analyze the safety, coordination, and interactions between the at-grade railroad crossing and traffic flows on Normandie Avenue and 169th Street. The City of Gardena should undertake regular monitoring of actual traffic conditions and collision data, and timely re-evaluation of the full set of traffic signal warrants in order to prioritize and program intersections for signalization.

4. Residential Street Segment Analysis

Table 9 shows a summary of the residential street segment analysis. Twenty-four hour street segment counts were conducted in March 2022 at both analyzed street segments, 169th Street west of Brighton Avenue and 170th Street west of Brighton Avenue. Proposed Project driveways connect to both 169th Street and 170th Street. These street segment counts were then forecasted in a similar manner as the intersection turning movement counts, to which the Project's traffic was added to create Opening Year Plus Project volumes. The Project's percentage of Opening Year (2027) scenario volumes is also shown on Table 9. The Project is expected to add 97 daily trips to 169th Street and 113 daily trips to 170th Street, about 6.6% and 33.8% of their Opening Year (2027) volumes, respectively. While the City of Gardena does not have established criteria to evaluate unacceptable levels of traffic on residential streets, both streets are designated as Local Streets in the Gardena Circulation Plan. The Circulation Plan does not provide typical ADT for Local Streets, but the City defines the larger and wider Collector Roadways to carry less than 15,000 vehicles per day. Under Opening Year Plus Project conditions, the ADT on both Local Street segments is expected to be far less than typical ADT as shown in the Gardena Circulation Plan.

TABLE 9
RESIDENTIAL STREET SEGMENT ANALYSIS - DAILY TRAFFIC VOLUMES

		Segment Analysis			
Location	Existing (2022) ADT	Opening Year (2027) ADT	Project Only ADT	Opening Year Plus Project ADT	% of Opening Year ADT
169th Street					
w/o Brighton Avenue	1,343	1,370	97	1,467	6.6%
170th Street					
w/o Brighton Avenue	217	221	113	334	33.8%

Note: ADT = Average Daily Traffic

5. Non-Motorized Modes Analysis

5.1 Effects on Active Transportation

Pedestrian access to the Project's apartment building units will be provided on the ground floor with primary pedestrian access located at the building lobby located at the northeastern corner of the site, adjacent to the intersection of Normandie Avenue & 169th Street. Additional restricted pedestrian access will also be provided to other corners of the apartment building, which will lead to internal circulation serving the townhomes. Pedestrian access to the Project's townhomes will be provided via internal circulating roadways and sidewalks leading from 169th Street and 170th Street. Some townhome units will have direct pedestrian access to City streets. The project design provides for adequate pedestrian access to the existing sidewalks provided along the project frontage. There are several bus stops within a ¼-mile of the project site, including 166th Street & Brighton Avenue (eastbound and westbound) and Normandie Avenue & 170th Street (southbound and northbound). There are commercial land uses along Normandie Avenue and Artesia Boulevard. Project traffic and site design is not anticipated to deteriorate or effect existing pedestrian facilities in the study area.

The project includes amenities for bicyclists which could encourage the use of bicycles for certain trips. Long-term, enclosed bike storage will also be provided in the garage.

Separated or protected bicycle facilities are not currently provided along Normandie Avenue along the project site. According to the South Bay Bicycle Master Plan, Normandie Avenue is designated as a bike route (Class III) from 182nd Street to 170th Street. Additionally, 166th Street, 170th Street and Gardena Boulevard are designated as bike routes (Class III), but not on segments directly adjacent to the project site.

The following future Bicycle Friendly Street segment is proposed in the South Bay Bicycle Master Plan as a prioritized project in Gardena that is directly adjacent to the project site and may be implemented by the City in the future:

• 170th Street from Denker Avenue to Vermont Avenue (0.8 miles)

Implementation of the proposed project will not conflict with any existing bicycle facilities, and it will not preclude the implementation of any other potential enhancements to planned facilities. Similarly, bicycle trips will be generated by the project, but development of the project is not expected to conflict with any existing or planned bicycle facility.

Normandie Crossing Specific Plan Local Transportation Assessment July 2023

The proposed project is expected to generate bicycle and pedestrian trips to and from the project site, with some of those trips including the use of transit. Nearby land uses with retail, service, and employment opportunities are close enough to where walking and bicycling would be feasible.

5.2 Effects on Transit

The project site is located within a quarter mile of various bus stops (166th Street & Brighton Avenue and Normandie Avenue & 170th Street) and is served by transit service via the City of Gardena's Transit Service, GTrans. Project traffic and the design of the project site is not expected to affect access to or the operation of these services.

6. Summary and Conclusions

This LTA was undertaken to analyze the potential transportation effects of the proposed Project. The following summarizes the results of this analysis:

- The Project would involve the demolition of 106,100 sf of existing warehousing space and its replacement with 75 townhomes and 328 apartment dwelling units. The apartment units would be served by one right-in/right-out only driveway on Normandie Avenue and one full access driveway on 169th Street west of Normandie Avenue. The townhomes would be served by one full access driveway on 169th Street and one full access driveway on 170th Street.
- The Project would install a median along Normandie Avenue surrounding the Union Pacific railroad tracks to prevent left-turns into and out of the Project from Normandie Avenue.
- The Project would generate an estimated 1,715 daily trips, 126 trips (20 inbound/106 outbound) in the morning peak hour, and 138 trips (92 inbound/46 trips outbound) in the evening peak hour.
- The LOS analysis for the Existing, Opening Year, and Opening Year Plus Project scenarios determined that the proposed Project would result in LOS D or better conditions at all study intersections with the exception of the unsignalized intersection of Normandie Avenue and 169th Street, which is projected to operate at LOS E in the AM and PM peak hour. The City of Gardena does not have analysis criteria for unsignalized intersections.
- The queuing analysis determined that the Project would not result in intersection queues that would exceed turn pocket storage capacity at the intersection of Normandie Avenue and 169th Street.
- A full traffic signal warrant analysis at Normandie Avenue and 169th Street found that a traffic signal would not meet any CAMUTCD signal warrants under Existing (2022) conditions. Although Category B under Warrant 3 is satisfied under the Opening Year Plus Project AM scenario, this warrant shall only be applied in unusual cases as described in the CAMUTCD. Therefore, this intersection is not expected to meet warrants under the Opening Year Plus Project scenario. The City should continue to monitor traffic conditions after the Project is built and potentially reevaluate with the full set of traffic signal warrants. Alternatively, the City could consider restricting eastbound left-turns from 169th Street to northbound Normandie Avenue to reduce vehicular delay.
- The residential street segment analysis for the Opening Year plus Project scenario determined that the proposed Project would comprise of approximately 6.4% and 33.1% of Opening Year daily segment traffic along 169th Street and 170th Street, respectively. While the City of Gardena does not have thresholds or criteria for evaluating street segments, it is recommended that the City continue to monitor traffic conditions at these street segments after the Project is built and potentially explore traffic calming measures.
- The Project will generate bicycle, pedestrian, and transit trips, and is not expected to affect access to or the operations of these facilities.

Appendix A: LTA Scoping Memorandum

Memorandum

Date: 7 February 2022

To: Amanda Acuna & Greg Tsujiuchi, City of Gardena

From: Ryan Liu, PE & Michael Kennedy, AICP

Subject: Local Transportation Assessment Scoping Memorandum for the 16911 S

Normandie Avenue Apartments Project

LB21-0048

Fehr & Peers is preparing the transportation analyses as part of project entitlements for the Normandie Apartments Project ("Project"), located at 16911 S Normandie Avenue in the City of Gardena. The purpose of this memorandum is to document the methodologies and assumptions for the Project's non-CEQA Local Transportation Assessment (LTA) in accordance with the City's transportation analysis procedures. CEQA-related transportation analyses can be found in the Project's VMT Assessment Memorandum, which is part of the Project's CEQA documentation.

Project Description

The Project consists of the replacement of 105,000 square feet of warehousing uses with 76 low-rise townhomes and 273 apartments in a separate building. Access to the Project Site will be provided by the following five driveways:

- Driveway 1 serves the apartment building's parking garage from 169th Street west of Normandie Avenue.
- Driveway 2 also serves the apartment building's parking garage from Normandie Avenue.
- Driveway 3 serves the townhomes from Normandie Avenue and travels across Union Pacific railroad tracks, which border portions of the Project Site's eastern frontage.
- Driveway 4 serves the townhomes from 170th Street.
- Driveway 5 also serves the townhomes from 169th Street.

Internal roadways link Driveways 3-5 to all townhomes, but do not connect to the apartment building garage. **Figure 1** shows the Project site plan. The Project is expected to be completed in 2026.

Regulatory Framework

In 2020, the City of Gardena updated their transportation analysis guidelines for land use development projects in accordance with Senate Bill 743 (SB 743), which requires CEQA-related transportation analyses to use vehicle miles traveled (VMT) as the primary performance metric. Local agencies such as the City of Gardena chose to retain level-of-service (LOS) to provide an additional transportation-focused project review, prepared separately from the documentation required under CEQA. According to current City guidance, projects that generate 50 or more peak hour vehicle trips would require an LTA. Any intersection to which a proposed project is expected to add 50 peak hour trips in either AM or PM peak hour would be considered a study intersection.

Project Trip Generation

Trip generation rates from Trip Generation, 11th Edition (Institute of Transportation Engineers [ITE], 2021) were used to estimate the number of trips for most uses associated with the Project. The following trip generation land uses were used:

- ITE Land Use #220 (Low-Rise Multifamily Housing) was used for the proposed townhomes.
- ITE Land Use #221 (Mid-Rise Multifamily Housing) was used for the proposed apartments.
- ITE Land Use #150 (Warehousing) was used for the existing warehouses on the Project Site.

Project Trip Generation Estimates

Table 1 presents the estimated trip generation using trip generations for the fully built project, taking into account an existing use credit for the warehousing use. As presented in Table 1, the Project is expected to generate an estimated 1,483 net new daily vehicle trips, including 107 trips (15 inbound/ 92 outbound) during the AM peak hour and 119 trips (81 inbound/ 38 outbound) during the PM peak hour.

Because the Project is expected to generate more than 50 peak hour vehicle trips, an LTA is required. This LTA will provide an existing transportation conditions overview, LOS analysis, a residential street segment analysis, and an active transportation review.

LOS Analysis Assumptions

Study Intersections

The following study intersections were selected in consultation with City of Gardena staff, based on the expected number of vehicle trips to be added to nearby intersections. **Figure 2** identifies the five intersections that were approved by City staff for data collection:

- 1. Normandie Avenue & Gardena Boulevard (signalized)
- 2. Normandie Avenue & 166th Street (signalized)
- 3. Normandie Avenue & 169th Street (unsignalized)
- 4. Normandie Avenue & 170th Street (signalized)
- 5. Normandie Avenue & Artesia Boulevard (signalized)

Artesia Boulevard is an arterial street under local jurisdiction, which then transitions into SR-91 (Gardena Freeway) east of Vermont Avenue under Caltrans jurisdiction. Although the Project is located near freeway ramp intersections such as Vermont Avenue and the SR-91 terminus, none are proposed for analysis since the Project is not expected to add 50 or more trips at these locations.

Traffic Counts

Existing morning (7:00 to 9:00 AM) and evening (4:00 to 6:00 PM) peak period intersection counts will be conducted at the study intersections when local schools are in session, on good days of weather, on Tuesdays through Thursdays.

Fehr & Peers requests the following information from City of Gardena staff:

- Pending and approved development projects in Gardena that should be included in the forecasting effort. Pending and approved development projects will also be obtained from the City of Los Angeles.
- Signal timing information at the signalized study intersections

Trip Distribution and Assignment

The geographic distribution of trips generated by the Project is dependent on characteristics of the street system serving the Project site, the level of accessibility of routes to and from the proposed Project site, and the locations of employment and residential areas to which patrons of the Project would be drawn. The trip distribution is based on trip distribution information from the 2016 Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP) travel demand model and finalized through conversations with city staff to ensure that the assumptions are realistic and vetted. The 2020 SCAG RTP model is an activity based model (ABM) rather than a trip model, and has not been validated for project level CEQA clearance at this time,

which is why Fehr & Peers proposes to use the 2016 RTP Model. The 2016 RTP Model was also used to prepare the City's CEQA VMT impact metrics. However, the choice of model is up to the lead agency's discretion. The distribution of Project trips is illustrated in **Figure 3**.

Analysis Methodology

Fehr & Peers will conduct capacity analysis at the study intersections during morning and evening peak hours. The Highway Capacity Manual 6th Edition (HCM) methodology using Synchro 11 will be used to evaluate LOS at both signalized and unsignalized study intersections. Heavy vehicle percentages and peak hour factors (PHF) for HCM intersection analysis for existing scenarios will be determined based on the traffic counts, while a PHF of 0.95 will be used for HCM intersection analysis for future conditions.

Analysis Scenarios

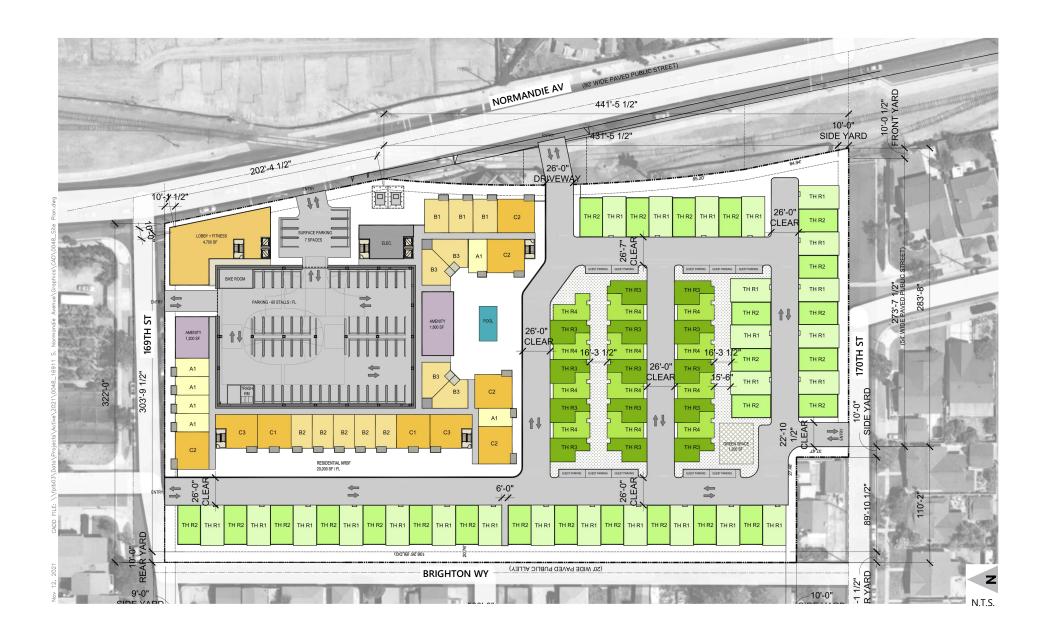
The following scenarios will be analyzed:

- Existing (2021 or 2022) Conditions Traffic counts conducted for this study will be analyzed to develop an existing baseline scenario.
- Opening Year Existing traffic conditions plus ambient growth and traffic from all the
 developments within the study area for which an application has been submitted
 ("pending projects), or that have been approved but not yet constructed.
 - Based on information from the SCAG travel demand model, the ambient growth rate for the City Gardena through 2040 would be 0.4% per year.
- Opening Year plus Project Traffic conditions of existing plus ambient growth and approved and pending developments, plus traffic generated by the proposed project.

Residential Street Assessment Assumptions

The City recommends that a residential street assessment be conducted when projects have direct access or are located adjacent to a neighborhood residential street. Because the Project is located adjacent to other residential developments and provides driveway access onto residential streets, a residential street assessment will be conducted. 24-hour two-way street segment counts will be collected at the same time as counts are collected at study intersections. The street segments proposed for assessment are:

- 169th Street west of Brighton Way
- 170th Street west of Brighton Way


The assessment will estimate the number of project trips expected to travel on these residential street segments on a daily basis and during AM and PM peak hours under plus-project conditions. If necessary, the City will consider the need for relevant traffic calming solutions.

Active Transportation Assessment Assumptions

The Project will also be reviewed for potential conflicts with adopted plans and policies related to active transportation, such as the South Bay Bicycle Master Plan. Any planned active transportation improvements in the immediate vicinity of the Project Site will be noted and documented in the Project site plan as necessary.

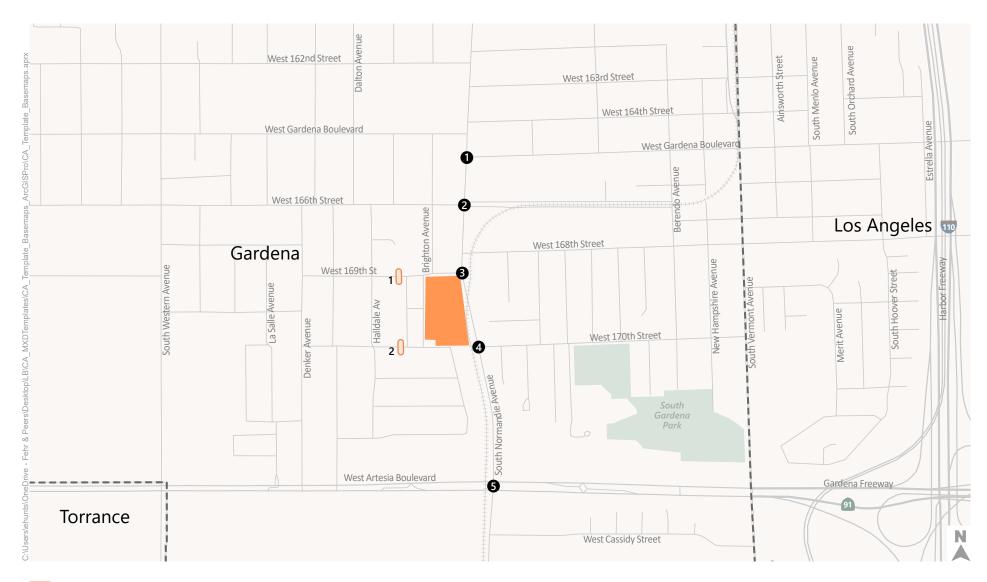
Next Steps

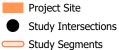
Once the proposed assumptions and methodology are approved, Fehr & Peers will collect counts and begin the transportation analyses.

Project Site Plan Normandie Apartments Project

TABLE 1

NORMANDIE APARTMENTS PROJECT


DAILY & PEAK HOUR VEHICLE TRIP GENERATION ESTIMATES


	ITE Land				Trip Ge	neration R	ates [a]					Estimate	d Trip Gen	eration		
Land Use	Use Code	Size	Daily	A	M Peak Ho	our	PI	M Peak Ho	our	Daily	AM	Peak Hour	Trips	PM	Peak Hour	Trips
	Ose Code		Daily	Rate	In%	Out%	Rate	In%	Out%	Daily	In	Out	Total	In	Out	Total
PROPOSED PROJECT																
Townhomes (Low-Rise) Less: Walk/Bike/Transit Adjustment [b] Net External Vehicle Trips	220	76 du	6.74 5%	0.4 5%	24%	76%	0.51 <i>5%</i>	63%	37%	512 (26) 486	7 0 7	23 (1) 22	30 (1) 29	25 (1) 24	14 (1) 13	39 (2) 37
Apartments (Mid-Rise) Less: Walk/Bike/Transit Adjustment [b] Net External Vehicle Trips	221	273 du	4.54 5%	0.37 5%	23%	77%	0.39 <i>5%</i>	61%	39%	1,239 <i>(62)</i> 1,177	23 (1) 22	78 <i>(4)</i> 74	101 <i>(5)</i> 96	65 (3) 62	41 <i>(2)</i> 39	106 <i>(5)</i> 101
TOTAL PROJECT EXTERNAL TRIPS		349 du								1,663	29	96	125	86	52	138
EXISTING USE ADJUSTMENT																
Warehousing	150	105.00 ksf	1.71	0.17	77%	23%	0.18	28%	72%	180	14	4	18	5	14	19
NET INCREMENTAL EXTERNAL TRIPS										1,483	15	92	107	81	38	119

Notes:

[[]a] Source: Institute of Transportation Engineers (ITE), Trip Generation, 11th Edition, 2021, unless otherwise noted.

[[]b] Although GTrans Line 4 is not currently providing service to/from the Harbor Gateway Transit Center due to the COVID-19 Pandemic, it is expected that this service would return in the future. Bus service provided by GTrans Lines 1X and 4 connect to major transit hubs and destinations, which informs the combined walking, biking, and transit trip generation credit. Base ITE rates do not take into account the usage of other modes of transportation.



Cities

Figure 2

Study Intersections and Study Segments Normandie Apartments Project

Project Site

Study Intersections

Study Segments

Cities

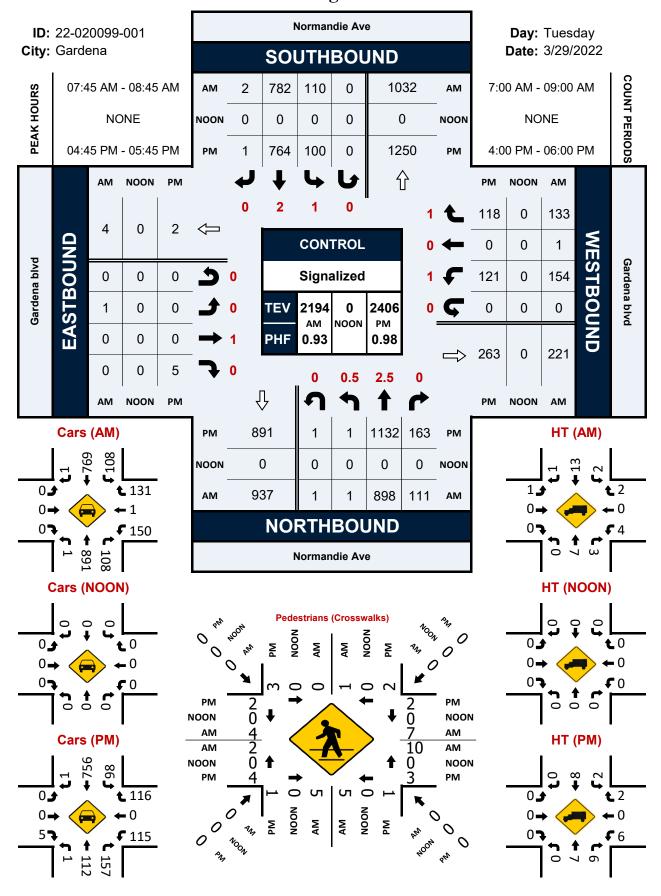
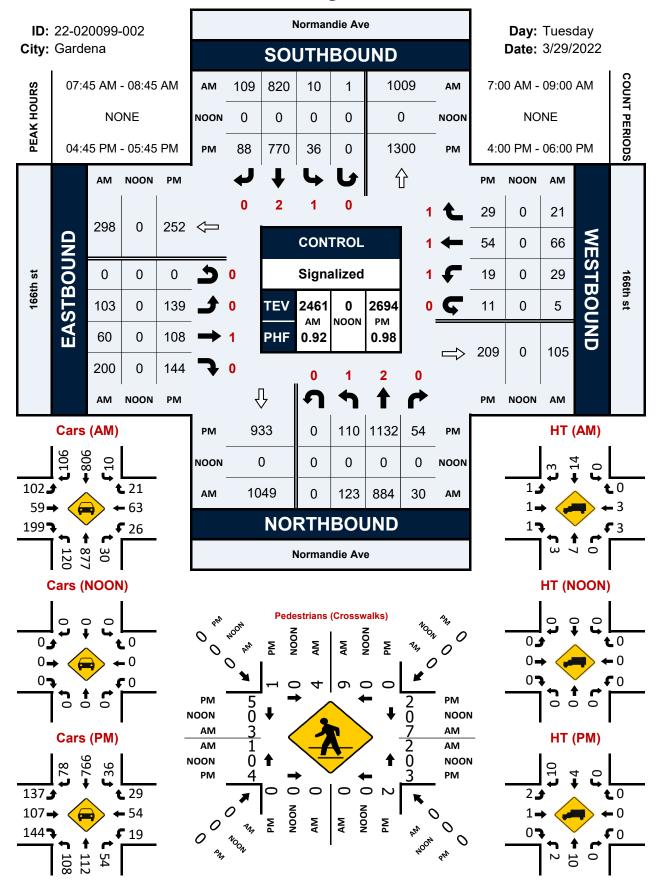
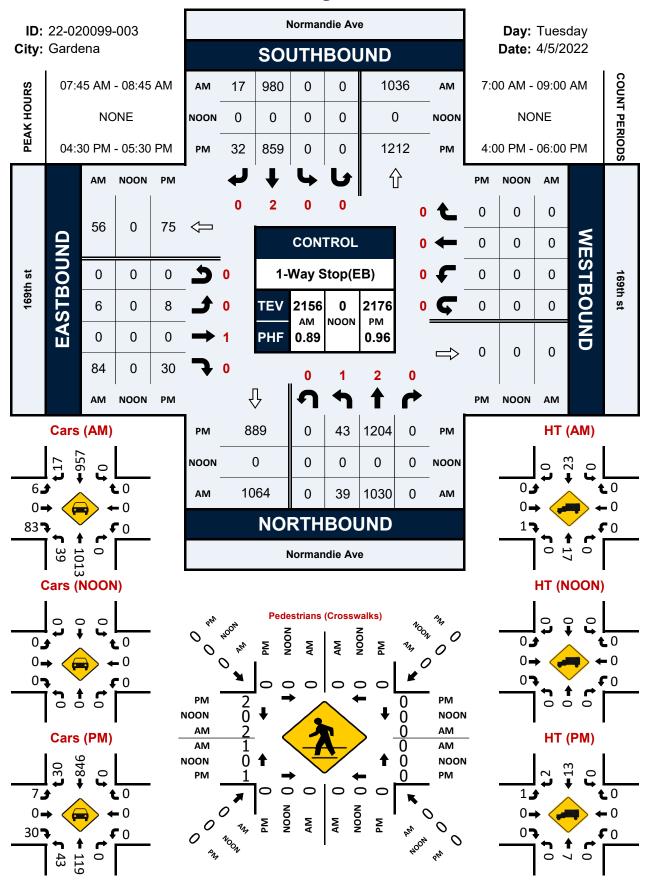
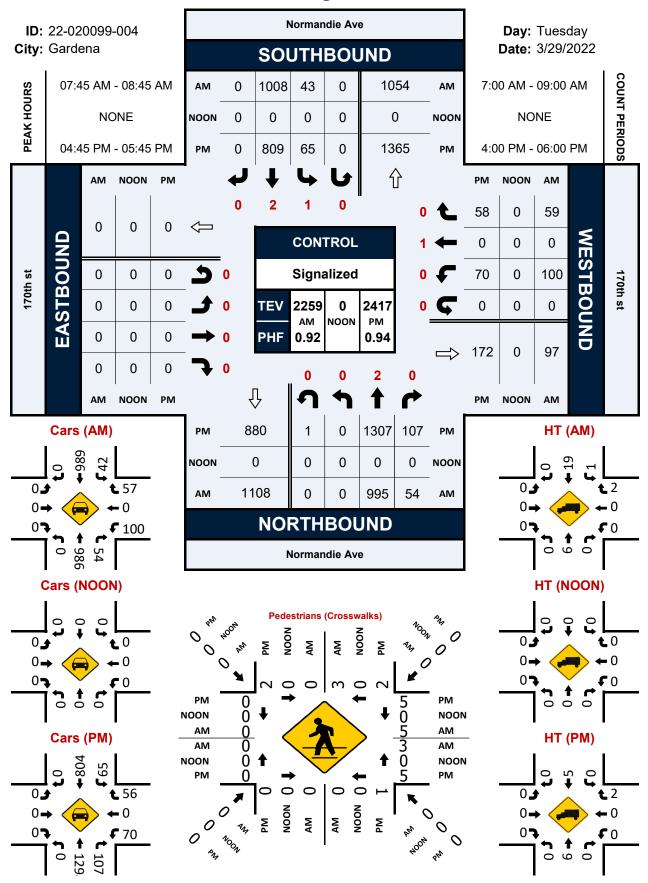


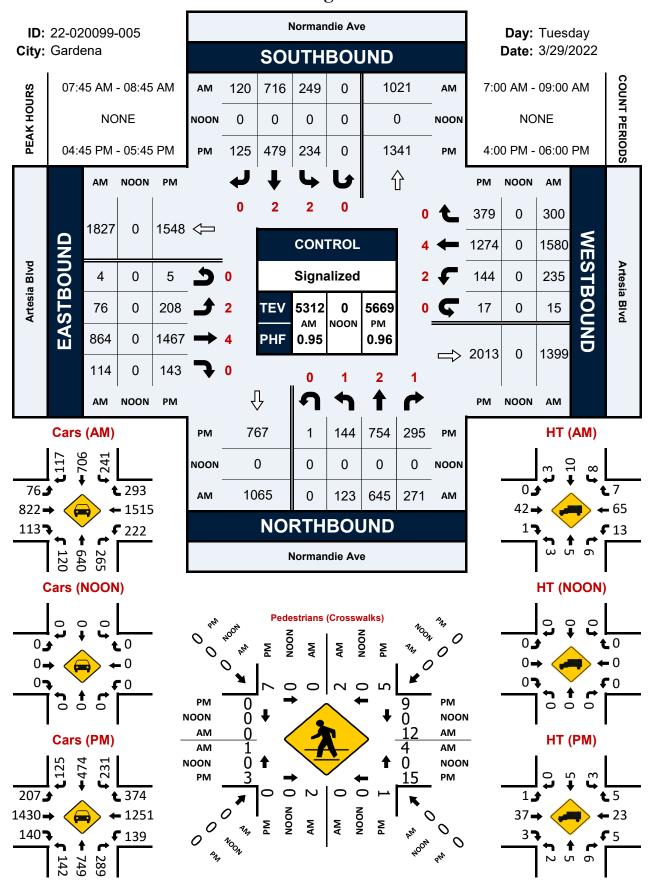
Figure 3


Trip Distribution Normandie Apartments Project

Appendix B: Traffic Counts


Normandie Ave & Gardena blvd


Normandie Ave & 166th st


Normandie Ave & 169th st

Normandie Ave & 170th st

Normandie Ave & Artesia Blvd

169th St W/O Brighton Way

Day: Tuesday **Date:** 3/29/2022

City: Gardena

	DAILY TO	TAIS			NB		SB		EB		WB						To	tal
	DAILT TO	IALS			0		0		637		706						1,3	343
AM Period	NB S	SB	EB		WB		TO	TAL	PM Period	NB		SB	EB		WB		TO	TAL
00:00			0		0		0		12:00				8		10		18	
00:15			0		2		2		12:15				8		8		16	
00:30 00:45			0 1	1	4 0	6	4	7	12:30 12:45				8 11	35	8 11	37	16 22	72
01:00			0		0	0	0	,	13:00				8	33	15	37	23	12
01:15			0		0		0		13:15				12		15		27	
01:30			0	_	1		1		13:30				8	0-	11		19	0.5
01:45 02:00			<u>1</u> 0	1	0 1	1	1	2	13:45 14:00				9 10	37	7 10	48	16 20	85
02:00			0		0		1 0		14:15				10 7		10		20 19	
02:30			0		0		0		14:30				8		18		26	
02:45			0		0	1	0	1	14:45				14	39	13	53	27	92
03:00			0		1		1		15:00				8		22		30	
03:15 03:30			2		0		2		15:15 15:30				8 16		6 15		14 31	
03:45			1	3	1	3	2	6	15:45				12	44	15	58	27	102
04:00			0		0		0		16:00				11		19		30	
04:15			0		1		1		16:15				12		15		27	
04:30			0	Δ	0	2	0	C	16:30				9	40	20	<u>ر د</u>	29	105
04:45 05:00			<u>4</u> 5	4	1 2	2	5 7	6	16:45 17:00				8 15	40	<u>11</u> 20	65	19 35	105
05:15			2		1		3		17:15				11		18		29	
05:30			4		3		7		17:30				11		19		30	
05:45			5	16	1	7	6	23	17:45				8	45	12	69	20	114
06:00			3		2		5		18:00				8		11		19	
06:15 06:30			3 11		2 3		5 14		18:15 18:30				10 11		12 6		22 17	
06:45			14	31	5 5	12	19	43	18:45				5	34	8	37	13	71
07:00			12	<u> </u>	7		19	13	19:00				9	<u> </u>	15	3,	24	, _
07:15			13		6		19		19:15				5		11		16	
07:30			15		12		27		19:30				8		13		21	
07:45			16	56	12	37	28	93	19:45 20:00				6	28	8	47	14	75
08:00 08:15			24 22		15 8		39 30		20:15				5		8 5		9 10	
08:30			12		11		23		20:30				0		8		8	
08:45			13	71	10	44	23	115	20:45				5	11	2	23	7	34
09:00			9		7		16		21:00				6		7		13	
09:15			8		7		15		21:15				5		8 7		13	
09:30 09:45			14 11	42	11 5	30	25 16	72	21:30 21:45				5 ⊿	20	6	28	12 10	48
10:00			15	72	10	30	25	12	22:00				1	20	1	20	2	70
10:15			8		7		15		22:15				1		5		6	
10:30			6	_	9	_	15		22:30				0		1		1	
10:45			4	33	8	34	12	67	22:45				0	2	3	10	3	12
11:00 11:15			2 11		9 14		11 25		23:00 23:15				υ 2		პ ვ		3 5	
11:30			14		7		21		23:30				1		1		2	
11:45			12	39	14	44	26	83	23:45				2	5	3	10	5	15
TOTALS				297		221		518	TOTALS					340		485		825
SPLIT %				57.3%		42.7%		38.6%	SPLIT %					41.2%		58.8%		61.4%
					NB		SB		EB		WB						Io	tal
	DAILY TO	TALS			0		0		637		706							343
											700							
AM Peak Hour				07:30		07:30		07:30	PM Peak Hour					15:30		15:45		15:30
AM Pk Volume				77		47		124	PM Pk Volume					51		69		115
Pk Hr Factor				0.802		0.783		0.795	Pk Hr Factor					0.797		0.863		0.927
7 - 9 Volume				127		81		208	4 - 6 Volume					85		134		219
7 - 9 Peak Hour				07:30		07:30			4 - 6 Peak Hour					16:45		16:30		17:00
7 - 9 Pk Volume				77 0.802		47 0.783			4 - 6 Pk Volume					45 0.750		69 0.863		114
Pk Hr Factor	0.000	0.000		0.802		0.783		0.795	Pk Hr Factor		0.000	0	0.000	0.750		0.863		0.814

170th St W/O Brighton Way

Day: Tuesday **Date:** 3/29/2022

City: Gardena

	DAILY TO	ΓΛΙς		NB		SB	EB	V	WB_					То	otal
	DAILTIO	IALS		0		0	115	1	.02					2	17
AM Period	NB SI	В Е	В	WB		TOTAL	PM Period	NB	SB	EB		WB		ТО	TAL
00:00		C		0		0	12:00			1		1		2	
00:15		0		0		0	12:15			1		3		4	
00:30		1		0		1	12:30			3	_	2	_	5	10
00:45		1	. 2	0	-	1 2	12:45			0	5	1	7	1	12
01:00 01:15		0		0		0	13:00 13:15			7 T		2 1		3 4	
01:30		1		0		1	13:30			3 7		3		10	
01:45		0	1	0		0 1	13:45			1	12	2	8	3	20
02:00		C		0		0	14:00			1		1		2	
02:15		0)	0		0	14:15			3		2		5	
02:30		0		0		0	14:30			1		2		3	
02:45		0		0		0	14:45			3	8	3	8	6	16
03:00		0		0		0	15:00			1		4		5	
03:15		0		0		0	15:15 15:30			0		1		1	
03:30 03:45		0		0 0		0	15:45			1	4	0	5	1	9
04:00				0		1	16:00			3		2		5	9
04:15		Ö	·)	0		0	16:15			1		1		2	
04:30		O)	0		0	16:30			2		3		5	
04:45		C	1	0		0 1	16:45			2	8	2	8	4	16
05:00		C)	0		0	17:00			5		4		9	
05:15		0		0		0	17:15			4		5		9	
05:30		0		1		1	17:30			4	4.6	3	4.0	7	20
05:45				0	1	0 1	17:45 18:00			3	16	0	12	3	28
06:00 06:15		0		1		1	18:15			5 1		1		6 5	
06:30		0		0		0	18:30			1		1		2	
06:45		0)	0	1	0 1	18:45			0	7	1	7	1	14
07:00		2		1		3	19:00			1		1		2	
07:15		2		2		4	19:15			0		1		1	
07:30		0)	2		2	19:30			3		0		3	
07:45		4	. 8	3	8	7 16	19:45			1	5	1	3	2	8
08:00		2	•	2		4	20:00			3		2		5	
08:15		1	•	0		1	20:15 20:30			2		0		2	
08:30 08:45		1	4	0 0	2	1 0 6	20:45			0	5	2	4	0 2	9
09:00		2		1		3	21:00			<u>0</u> 1		1	4	2	9
09:15		1		1		2	21:15			1		1		2	
09:30		O)	2		2	21:30			1		1		2	
09:45		0	3	2	6	2 9	21:45			2	5	0	3	2	8
10:00		2	•	3		5	22:00			0		2		2	
10:15		3		2		5	22:15			0		0		0	
10:30		2		2	_	4	22:30			0		0	_	0	
10:45		2	9	1	8	3 17	22:45			0		0	2	0	2
11:00 11:15		1		⊿		2 8	23:00 23:15			0		0 2		2	
11:15		4	•	2		8 4	23:30			O O		0		0	
11:45		4	. 11	0	7	4 18				0	1	0	2	0	3
TOTALS			39		33	72				<u> </u>	76		69		145
SPLIT %			54.2%		45.8%	33.2					52.4%	4	17.6%		66.8%
				ND		CD			A/D						
	DAILY TO	ΓALS		NB		SB	EB		WB_						otal
				0		0	115	1	.02					2:	17
AM Peak Hour			11:00		07:15	11:0	0 PM Peak Hour				17:00		16:30		16:45
AM Pk Volume			11.00		9	18	PM Pk Volume				16		14		29
Pk Hr Factor			0.688		0.750	0.5					0.800		0.700		0.806
7 - 9 Volume	0	0	12		10	22	_		0	0	24		20		44
7 - 9 Peak Hour			07:00		07:15		5 4 - 6 Peak Hour				17:00		16:30		16:45
7 - 9 Pk Volume			8		9	17	4 - 6 Pk Volume				16		14		29
Pk Hr Factor			0.500		0.750	0.60					0.800		0.700		0.806
						0.00									

Normandie Ave N/O 169th St

Day: Tuesday **Date:** 5/10/2022

City: Gardena

	D	AILY 1	ΓΩΤΔ	ıs		NB	SB		EB		WB						To	otal
		AILI		(L)		13,366	11,224	1	0		0						24,	,590
AM Period	NB		SB		ЕВ	WB	TC	TAL	PM Period	NB		SB		EB	WB		ТО	TAL
0:00	36		11				47		12:00 12:15	206		175					381	
0:15 0:30	16 17		9 3				25 20		12:15	219 202		190 159					409 361	
0:45	15	84	7	30			22	114	12:45	187	814	184	708				371	1522
1:00 1:15	9 9		7 4				16 13		13:00 13:15	185 219		191 178					376 397	
1:30	6		8				14		13:30	210		217					427	
1:45	8	32	3	22			11	54	13:45	204	818	182	768				386	1586
2:00 2:15	9 10		2 4				11 14		14:00 14:15	216 206		171 163					387 369	
2:30	8		6				14		14:30	211		185					396	
2:45	7	34	4	16			11	50	14:45	241	874	178	697				419	1571
3:00 3:15	12 4		4 5				16 9		15:00 15:15	216 235		238 217					454 452	
3:30	4		4				8		15:30	282		232					514	
3:45 4:00	8 8	28	11 14	24			19 22	52	15:45 16:00	310 306	1043	222 199	909				532 505	1952
4:00 4:15	20		14 16				36		16:15	274		208					482	
4:30	15	<u> </u>	27				42	4	16:30	304	400-	241	077				545	0.0=5
4:45 5:00	21 19	64	30 24	87			51 43	151	16:45 17:00	322 282	1206	224 218	872				546 500	2078
5:15	31		52				83		17:15	276		201					477	
5:30	44	4.40	65	246			109	265	17:30	322	1205	246	072				568	2070
5:45 6:00	55 59	149	75 73	216			130 132	365	17:45 18:00	326 287	1206	207 174	872				533 461	2078
6:15	73		83				156		18:15	273		154					427	
6:30	103	220	115	411			218	740	18:30	204	000	170	641				374	1621
6:45 7:00	103 162	338	140 124	411			243 286	749	18:45 19:00	216 208	980	143 142	641				359 350	1621
7:15	171		175				346		19:15	164		135					299	
7:30 7:45	186 225	744	189 281	769			375 506	1513	19:30 19:45	153 147	672	134 107	518				287 254	1190
8:00	248	7	304	703			552	1313	20:00	135	072	91	310				226	1130
8:15	256		246				502		20:15	157		101					258	
8:30 8:45	250 215	969	187 175	912			437 390	1881	20:30 20:45	117 96	505	86 59	337				203 155	842
9:00	176		136	312			312	1001	21:00	71	303	53	337				124	0.12
9:15	186		150				336		21:15	75 72		64 70					139	
9:30 9:45	170 177	709	166 161	613			336 338	1322	21:30 21:45	73 77	296	70 71	258				143 148	554
10:00	162		152				314		22:00	62		61					123	
10:15 10:30	184 197		140 166				324 363		22:15 22:30	66 60		52 40					118 100	
10:45	189	732	147	605			336	1337	22:45	41	229	43	196				84	425
11:00	175		159				334		23:00	40		26	_	_			66	
11:15 11:30	172 169		183 160				355 329		23:15 23:30	40 31		20 16					60 47	
11:45	184	700	159	661			343	1361	23:45	29	140	20	82				49	222
TOTALS		4583		4366				8949	TOTALS		8783		6858					15641
SPLIT %		51.2%		48.8%				36.4%	SPLIT %		56.2%		43.8%					63.6%
		A 11 V =	rota	ıc		NB	SB		ЕВ		WB						To	otal
	D	AILY 1	TOTA	112		13,366	11,224	1	0		0							,590
AM Peak Hour		7:45		7:30				7:45	PM Peak Hour		17:15		15:00					16:45
AM Pk Volume		979		1020				1997	PM Pk Volume		1211		909					2091
Pk Hr Factor		0.956		0.839				0.904	Pk Hr Factor		0.929		0.955					0.920
7 - 9 Volume 7 - 9 Peak Hour		1713 7:45		1681 7:30				3394 7:45	4 - 6 Volume 4 - 6 Peak Hour		2412 16:00		1744 16:15					4156 16:45
7 - 9 Pk Volume		979		1020					4 - 6 Pk Volume		1206		891					2091
Pk Hr Factor		0.956		0.839	0.000	0.000	0	0.904	Pk Hr Factor		0.936		0.924	0.00		0.000		0.920

Normandie Ave N/O 169th St

Day: Wednesday Date: 5/11/2022

City: Gardena

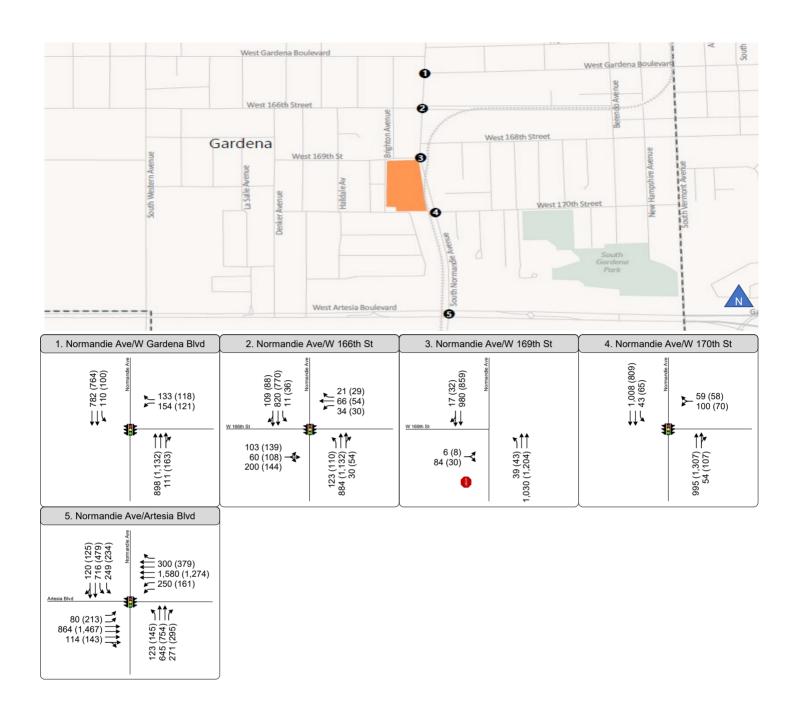
	D	AILY 1	rota	US		NB		SB		EB		WB						To	otal
	U	AILT	IUIA	(L)		13,189	1	11,142		0		0						24	,331
AM Period	NB		SB		EB	WB		TO	TAL	PM Period	NB		SB		EB	W	В	ТО	TAL
0:00	20		16					36		12:00	166		174					340	
0:15	24		5					29		12:15 12:30	201		184					385	
0:30 0:45	26 22	92	8 10	39				34 32	131	12:30	183 198	748	178 181	717				361 379	1465
1:00	17	<u> </u>	5					22	101	13:00	175	, 10	192	, _ ,				367	1103
1:15	15		8					23		13:15	173		168					341	
1:30 1:45	8 13	53	7 2	22				15 15	75	13:30 13:45	207 222	777	162 171	693				369 393	1470
2:00	12	33	5					17	75	14:00	206	///	185	093				391	14/0
2:15	8		9					17		14:15	201		174					375	
2:30	11		5					16		14:30	241		213					454	
2:45 3:00	12 8	43	<u>6</u> 3	25				18 11	68	14:45 15:00	244 240	892	189 291	761				433 531	1653
3:15	7		8					15		15:15	233		229					462	
3:30	4		9					13		15:30	296		230					526	
3:45	5	24	5	25				10	49	15:45	309	1078	222	972				531	2050
4:00 4:15	9 11		6 18					15 29		16:00 16:15	279 293		203 213					482 506	
4:30	22		27					49		16:30	260		230					490	
4:45	20	62	16	67				36	129	16:45	303	1135	233	879				536	2014
5:00	26		39					65		17:00	302		228					530	
5:15 5:30	30 32		47 62					77 94		17:15 17:30	314 299		196 227					510 526	
5:45	67	155	57	205				124	360	17:45	270	1185	218	869				488	2054
6:00	73		72					145		18:00	271		175					446	
6:15	79		77					156		18:15	235		177					412	
6:30 6:45	94 116	362	109 112	370				203 228	732	18:30 18:45	224 185	915	167 130	649				391 315	1564
7:00	157	302	125	370				282	732	19:00	178	913	144	043				322	1304
7:15	162		176					338		19:15	177		132					309	
7:30	204	745	195	765				399	1510	19:30	148	647	108	402				256	1110
7:45 8:00	222 255	745	269 320	765				491 575	1510	19:45 20:00	144 131	647	109 106	493				253 237	1140
8:15	244		235					479		20:15	149		80					229	
8:30	253		191					444		20:30	122		81					203	
8:45	234	986	161	907				395	1893	20:45	122	524	51	318				173	842
9:00 9:15	178 171		162 139					340 310		21:00 21:15	124 82		75 68					199 150	
9:30	145		139					284		21:30	78		67					145	
9:45	163	657	142	582				305	1239	21:45	74	358	58	268				132	626
10:00	147		137					284		22:00	69		49					118	
10:15 10:30	185 167		158 140					343 307		22:15 22:30	61 52		37 34					98 86	
10:45	170	669	157	592				327	1261	22:45	50	232	25	145				75	377
11:00	169		173					342		23:00	42		34					76	
11:15	180		176 167					356		23:15 22:20	46 20		32					78 50	
11:30 11:45	164 182	695	167 159	675				331 341	1370	23:30 23:45	38 29	155	21 17	104				59 46	259
TOTALS		4543		4274				- 14	8817	TOTALS		8646		6868				1,5	15514
SPLIT %		51.5%		48.5%					36.2%			55.7%		44.3%					63.8%
JI LII /0		J1.J/0		1 0.3/0					JU.Z/0	31 E11 /d		33.7 /0		77.3/0					03.070
	D	AILY 1	ΓΟΤΑ	LS		NB		SB		EB		WB							otal
						13,189	1	11,142		0		0						24,	,331
AM Peak Hour		8:00		7:30					7:45	PM Peak Hour		16:45		15:00					16:45
AM Pk Volume		986		1019					1989	PM Pk Volume		1218		972					2102
Pk Hr Factor		0.967		0.796			0		0.865	Pk Hr Factor		0.970		0.835		0			0.980
7 - 9 Volume 7 - 9 Peak Hour		1731 8:00		1672 7:30					3403 7:45	4 - 6 Volume 4 - 6 Peak Hour		2320 16:45		1748 16:15					4068 16:45
7 - 9 Peak Hour 7 - 9 Pk Volume		8:00 986		7:30 1019						4 - 6 Peak Hour 4 - 6 Pk Volume		16:45		16:15 904					2102
Pk Hr Factor		0.967		0.796					0.865	Pk Hr Factor		0.970		0.970					0.980

169th St W/O Normandie Ave

Day: Tuesday **Date:** 5/10/2022

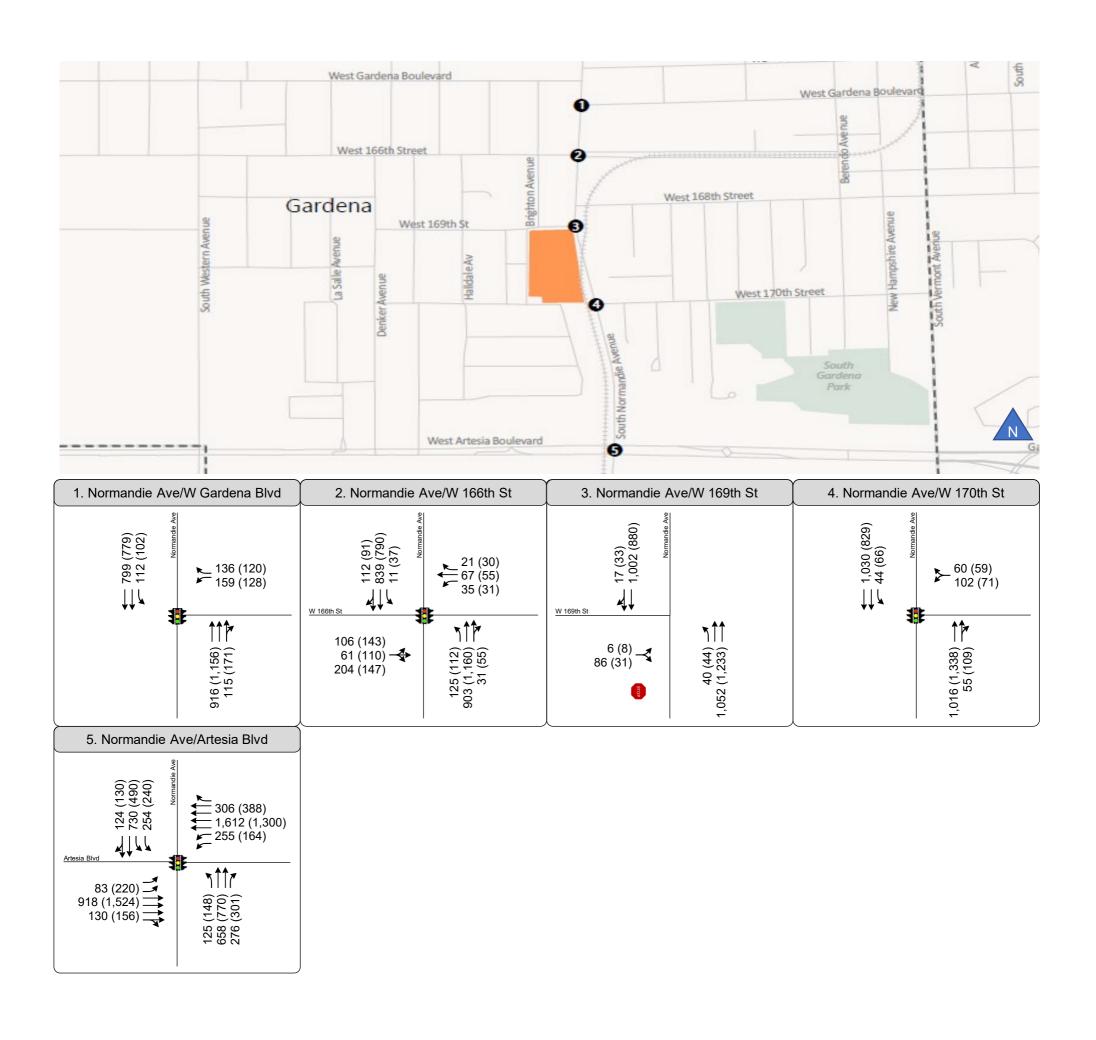
City: Gardena

	DAILY TOTAI	ıç		NB		SB		EB		WB						То	otal
	DAILT TOTAL	L J		0		0		715		853						1,5	568
AM Period	NB SB	EB		WB		TO	TAL	PM Period	NB		SB	EB		WB		TO	TAL
0:00		0		1		1		12:00				14		17		31	
0:15		0		0		0	'	12:15				16		12		28	
0:30		2		0		2	,	12:30				7		10		17	
0:45		0	2	0	1	0	3	12:45				6	43	6	45	12	88
1:00		0		0		0		13:00				10		9		19	
1:15 1:30		0) 1		1 3		13:15 13:30				11 12		6 15		17 27	
1:45		1	2	0	3	1	5	13:45				9	42	12	42	21	84
2:00		0		1		1	J	14:00				12		8		20	0.
2:15		0		0		0		14:15				15		13		28	
2:30		0		1		1		14:30				11		18		29	
2:45		1	1	1	3	2	4	14:45				10	48	8	47	18	95
3:00		0		1		1		15:00				8		15		23	
3:15		0		2		2		15:15				14		18		32 23	
3:30 3:45		2	4	2	7	4	11	15:30 15:45				12 10	44	11 12	56	23	100
4:00		<u>2</u> 1		2	,	3	11	16:00				17		18	30	35	100
4:15		3		1		4		16:15				10		14		24	
4:30		3		2		5		16:30				13		17		30	
4:45		3	10	1	6	4	16	16:45				10	50	16	65	26	115
5:00		3		4		7		17:00				9		32		41	
5:15		12		4		16		17:15				5		23		28	
5:30		2	2.4	3	1.1	5	20	17:30				14	4.4	12	0.0	26	120
5:45 6:00		/ 	24	3	14	10 8	38	17:45 18:00				16 10	44	19 15	86	35 25	130
6:15		5		8		13		18:15				4		13		23 17	
6:30		6		8		14		18:30				12		13		25	
6:45		10	26	11	30	21	56	18:45				9	35	14	55	23	90
7:00		10		8		18		19:00				6		18		24	
7:15		11		7		18		19:15				4		14		18	
7:30		19		6		25		19:30				8		13		21	
7:45		22	62	18	39	40	101	19:45				7	25	12	57	19	82
8:00 8:15		27 18		19 11		46 29		20:00 20:15				6 8		10 17		16 25	
8:30		17		14		31		20:30				10		13		23	
8:45		13	75	5	49	18	124	20:45				3	27	14	54	17	81
9:00		9	,,,	15		24		21:00				5		8	<u> </u>	13	02
9:15		4		9		13		21:15				2		10		12	
9:30		12		10		22		21:30				5		8		13	
9:45		7	32	11	45	18	77	21:45				6	18	6	32	12	50
10:00		11		11		22		22:00				5		5		10	
10:15 10:30		8		9 10		17 18		22:15 22:30				2		4		6	
10:45		8 7	34	12	42	19	76	22:45				2	10	5 1	15	6 3	25
11:00		14	<u> </u>	7	16	21	, 3	23:00				2		8		10	
11:15		12		17		29		23:15				5		1		6	
11:30		9		13		22		23:30				3		1		4	
11:45		10	45	11	48	21	93	23:45				2	12	2	12	4	24
TOTALS			317		287		604	TOTALS					398		566		964
SPLIT %			52.5%		47.5%		38.5%	SPLIT %					41.3%		58.7%		61.5%
				NB		SB		ЕВ		WB						To	otal
	DAILY TOTAI			0		0		715		853							568
AM Peak Hour			7:30		7:45		7:45	PM Peak Hour					15:15		16:30		17:00
AM Pk Volume			86		62		146	PM Pk Volume					53		88		130
Pk Hr Factor			0.796		0.816		0.793	Pk Hr Factor					0.779		0.688		0.793
7 - 9 Volume	0	0	137		88		225	4 - 6 Volume		0	0		94		151		245
7 - 9 Peak Hour			7:30		7:45			4 - 6 Peak Hour					16:00		16:30		17:00
7 - 9 Pk Volume			86		62			4 - 6 Pk Volume					50		88		130
Pk Hr Factor	0.000	0.000	0.796		0.816		0.793	Pk Hr Factor	(0.000	0.00	0	0.735		0.688		0.793


169th St W/O Normandie Ave

Day: Wednesday Date: 5/11/2022

City: Gardena


	DAILY TO	ΓΛΙς		_	NB		SB		EB	WB						To	otal
	DAILTIO	IALS			0		0		706	850						1,!	556
AM Period	NB SI	R	EB		WB		TO	TAL	PM Period	NB	SB	EB		WB		ΤO	TAL
0:00	ND 3		1		2		3	TAL	12:00	ND	Ju	9		9		18	
0:15			0		1		1		12:15			6		9		15	
0:30			1		1		2		12:30			6		12		18	
0:45			2	4	2	6	4	10	12:45			7	28	16	46	23	74
1:00			1		1		2		13:00			11		16		27	
1:15			0		1		1		13:15			14		11		25	
1:30			1		0		1		13:30			8		14		22	
1:45			2	4	1	3	3	7	13:45			9	42	9	50	18	92
2:00			1		1		2		14:00			11		20		31	
2:15			1		0		1		14:15			12		11		23	
2:30			0		0		0		14:30			14		16		30	
2:45			2	4	2	3	4	7	14:45			12	49	14	61	26	110
3:00			2		1		3		15:00			14		15		29	
3:15			1		0		1		15:15			10		11		21	
3:30			1		1		2		15:30			22		22		44	
3:45			0	4	2	4	2	8	15:45			7	53	12	60	19	113
4:00			0		2		2		16:00			11		21		32	
4:15			3		2		5		16:15			13		21		34	
4:30			1	•	0	_	1	4.5	16:30			16	50	16	70	32	422
4:45			4	8	3	7	/	15	16:45			10	50	14	72	24	122
5:00			1		5		6		17:00			9		24		33	
5:15			<i>/</i>		2		9		17:15 17:20			9		17		26	
5:30			о 7	21	2	42	8	2.4	17:30			11	41	18	72	29	112
5:45 6:00			4	21	<u>4</u> 3	13	11 7	34	17:45 18:00			12 17	41	13 14	72	25 31	113
					3 7		12		18:15			1/ 7				21	
6:15 6:30			5 15		7		22		18:30			1		14 15		19	
6:45			12	36	, 11	28	23	64	18:45			9	37	9	52	18	89
7:00			16	30	9	20	25	04	19:00			8	37	13	32	21	69
7:00 7:15			11		9		20		19:15			11		12		23	
7:30			14		7		21		19:30			5		11		16	
7:45			21	62	21	46	42	108	19:45			11	35	13	49	24	84
8:00			29	02	16	10	45	100	20:00			5		5	13	10	01
8:15			16		12		28		20:15			6		10		16	
8:30			17		13		30		20:30			4		11		15	
8:45			9	71	10	51	19	122	20:45			3	18	6	32	9	50
9:00			12		8		20		21:00			6		8		14	
9:15			10		8		18		21:15			1		8		9	
9:30			6		11		17		21:30			3		9		12	
9:45			4	32	9	36	13	68	21:45			6	16	8	33	14	49
10:00			7		12		19		22:00			2		3		5	
10:15			11		10		21		22:15			3		4		7	
10:30			9		13		22		22:30			4		7		11	
10:45			7	34	5	40	12	74	22:45			2	11	1	15	3	26
11:00			15		11		26		23:00			1		3		4	
11:15			10		18		28		23:15			2		4		6	
11:30			6		11		17		23:30			1		2		3	
11:45			10	41	18	58	28	99	23:45			1	5	4	13	5	18
TOTALS				321		295		616	TOTALS				385		555		940
SPLIT %				52.1%		47.9%		39.6%	SPLIT %				41.0%		59.0%		60.4%
					NB		SB		EB	WB						To	otal
	DAILY TO	TALS			0		0		706	850							556
ANA Develop				7.45		7 45		7.45					4445		45.00		
AM Peak Hour				7:45		7:45		7:45	PM Peak Hour				14:45		15:30		15:30
AM Pk Volume				83		62		145	PM Pk Volume				58		76		129
Pk Hr Factor				0.716		0.738		0.806	Pk Hr Factor				0.659		0.864		0.733
7 - 9 Volume				133		97		230	4 - 6 Volume				91		144		235
7 - 9 Peak Hour				7:45		7:45		7:45	4 - 6 Peak Hour				16:00		16:15		16:15
7 - 9 Pk Volume				83		62		145	4 - 6 Pk Volume				50		75		123
Pk Hr Factor	0.000	0.000		0.716		0.738		0.806	Pk Hr Factor	0.000	0.00	0	0.781		0.781		0.904

Appendix C: Traffic Volumes and Lane Configurations

Appendix D: LOS and Queuing Worksheets

Existing (2022) Conditions

	•	•	†	<i>></i>	-	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	ተተ _ጮ		ሻ	^	
Traffic Volume (veh/h)	154	133	898	111	110	782	
Future Volume (veh/h)	154	133	898	111	110	782	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1945	1870	1870	1870	1870	
Adj Flow Rate, veh/h	166	28	966	102	118	841	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	207	192	3206	337	474	2745	
Arrive On Green	0.12	0.12	0.69	0.69	0.04	0.77	
Sat Flow, veh/h	1781	1648	4842	492	1781	3647	
Grp Volume(v), veh/h	166	28	703	365	118	841	
Grp Sat Flow(s),veh/h/ln	1781	1648	1702	1762	1781	1777	
Q Serve(g_s), s	8.2	1.4	7.4	7.4	1.6	6.3	
Cycle Q Clear(g_c), s	8.2	1.4	7.4	7.4	1.6	6.3	
Prop In Lane	1.00	1.00		0.28	1.00		
ane Grp Cap(c), veh/h	207	192	2335	1209	474	2745	
V/C Ratio(X)	0.80	0.15	0.30	0.30	0.25	0.31	
Avail Cap(c_a), veh/h	416	385	2335	1209	616	2745	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	0.79	0.79	1.00	1.00	
Uniform Delay (d), s/veh	38.7	35.7	5.6	5.6	3.6	3.1	
ncr Delay (d2), s/veh	7.0	0.3	0.3	0.5	0.1	0.3	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	3.9	0.6	2.2	2.4	0.4	1.5	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	45.7	36.1	5.9	6.1	3.7	3.3	
nGrp LOS	D	D	Α	Α	Α	Α	
Approach Vol, veh/h	194		1068			959	
Approach Delay, s/veh	44.3		5.9			3.4	
Approach LOS	D		A			A	
Timer - Assigned Phs		2		4			7 8
Phs Duration (G+Y+Rc), s		15.5		74.5			7.8 66.7
Change Period (Y+Rc), s		5.0		5.0			4.0 5.0
Max Green Setting (Gmax), s		21.0		59.0			11.0 44.0
Max Q Clear Time (g_c+l1), s		10.2		8.3			3.6 9.4
Green Ext Time (p_c), s		0.4		10.4			0.0 5.2
· /		U. 4		10.4			0.0 0.2
Intersection Summary			0.0				
HCM 6th Ctrl Delay			8.2				
HCM 6th LOS			Α				

EX_AM 9:13 am 01/10/2023 Synchro 11 Report Page 1

	۶	→	\rightarrow	•	•	•	•	†	/	>	↓	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		4		*	†	7	ሻ	ħβ			ħβ		
Fraffic Volume (veh/h)	103	60	200	34	66	21	123	884	30	11	820	109	
uture Volume (veh/h)	103	60	200	34	66	21	123	884	30	11	820	109	
nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		0.97	1.00		0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1945	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	112	65	154	37	72	6	134	961	30	12	891	104	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	211	114	202	417	524	455	333	1850	58	337	1681	196	
Arrive On Green	0.28	0.28	0.28	0.28	0.28	0.28	0.53	0.53	0.53	0.53	0.53	0.53	
Sat Flow, veh/h	421	405	719	1154	1870	1625	565	3514	110	567	3193	373	
Grp Volume(v), veh/h	331	0	0	37	72	6	134	486	505	12	496	499	
Grp Sat Flow(s),veh/h/lr	1546	0	0	1154	1870	1625	565	1777	1847	567	1777	1789	
Q Serve(g_s), s	7.5	0.0	0.0	0.0	1.5	0.1	10.6	9.2	9.2	0.7	9.5	9.5	
Cycle Q Clear(g_c), s	10.0	0.0	0.0	1.6	1.5	0.1	20.0	9.2	9.2	9.9	9.5	9.5	
Prop In Lane	0.34		0.47	1.00		1.00	1.00		0.06	1.00		0.21	
_ane Grp Cap(c), veh/h		0	0	417	524	455	333	935	972	337	935	942	
//C Ratio(X)	0.63	0.00	0.00	0.09	0.14	0.01	0.40	0.52	0.52	0.04	0.53	0.53	
Avail Cap(c_a), veh/h	892	0	0	697	977	849	386	1100	1143	389	1100	1108	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/vel		0.0	0.0	14.0	13.9	13.4	14.6	8.0	8.0	11.2	8.0	8.0	
ncr Delay (d2), s/veh	1.2	0.0	0.0	0.1	0.1	0.0	0.8	0.4	0.4	0.0	0.5	0.5	
nitial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		0.0	0.0	0.3	0.6	0.0	1.2	2.6	2.7	0.1	2.7	2.7	
Jnsig. Movement Delay										• • • •			
_nGrp Delay(d),s/veh	18.1	0.0	0.0	14.0	14.0	13.5	15.4	8.4	8.4	11.3	8.5	8.5	
_nGrp LOS	В	Α	Α	В	В	В	В	Α	Α	В	Α	Α	
Approach Vol, veh/h	_	331			115		_	1125		_	1007		
Approach Delay, s/veh		18.1			14.0			9.2			8.5		
Approach LOS		В			В			Α			A		
						•					, ,		
Fimer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)		19.5		32.2		19.5		32.2					
Change Period (Y+Rc),		5.0		5.0		5.0		5.0					
Max Green Setting (Gm		27.0		32.0		27.0		32.0					
Max Q Clear Time (g_c-		3.6		11.9		12.0		22.0					
Green Ext Time (p_c), s		0.5		6.5		1.8		5.2					
ntersection Summary													
HCM 6th Ctrl Delay			10.3										
HCM 6th LOS			В										

EX_AM 9:13 am 01/10/2023 Synchro 11 Report Page 2

Intersection						
Int Delay, s/veh	1					
	-				05-	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			^	ΦÞ	
Traffic Vol, veh/h	6	84	39	1030	980	17
Future Vol, veh/h	6	84	39	1030	980	17
Conflicting Peds, #/hr	0	0	3	0	0	3
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	_	100	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	94	44	1157	1101	19
NA - 1 /NA1	M: O		1.1.1		4-1-0	
	Minor2		Major1		//ajor2	
Conflicting Flow All	1781	563	1123	0	-	0
Stage 1	1114	-	-	-	-	-
Stage 2	667	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	73	470	618	-	-	-
Stage 1	276	-	-	-	-	-
Stage 2	472	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	67	469	616	-	-	-
Mov Cap-2 Maneuver	67	-	-	-	-	-
Stage 1	256	-	_	-	-	-
Stage 2	471	_	-	_	_	-
0						
Annanah	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	20.3		0.4		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		616		335		
HCM Lane V/C Ratio		0.071	_	0.302	-	-
HCM Control Delay (s)		11.3	_	20.3	-	
HCM Lane LOS		В	_	20.5 C	_	_
HCM 95th %tile Q(veh)	1	0.2		1.2	_	-
Holvi Jour Joure Q(Veri		0.2	_	1.2	_	_

EX_AM 9:13 am 01/10/2023 Synchro 11 Report Page 3

	•	•	†	/	>	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		† ‡	7,12,17	ች	^		
Traffic Volume (veh/h)	100	59	995	54	43	1008		
Future Volume (veh/h)	100	59	995	54	43	1008		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	0.99	•	0.99	1.00	•		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	No	1.00	1.00	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	1070	35	1082	55	47	1096		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Percent Heavy Veh, %	2	2	2	2	0.92	0.92		
• •	155		2045	104	398	2113		
Cap, veh/h Arrive On Green	0.12	50 0.12	0.59	0.59	0.59	0.59		
Sat Flow, veh/h	1298	417	3533	175	494	3647		
Grp Volume(v), veh/h	145	0	559	578	47	1096		
Grp Sat Flow(s),veh/h/ln	1727	0	1777	1838	494	1777		
Q Serve(g_s), s	3.0	0.0	6.8	6.8	2.3	6.6		
Cycle Q Clear(g_c), s	3.0	0.0	6.8	6.8	9.1	6.6		
Prop In Lane	0.75	0.24		0.10	1.00			
ane Grp Cap(c), veh/h	206	0	1057	1093	398	2113		
//C Ratio(X)	0.70	0.00	0.53	0.53	0.12	0.52		
Avail Cap(c_a), veh/h	1411	0	2394	2476	770	4789		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00		
Jniform Delay (d), s/veh	15.5	0.0	4.4	4.4	7.1	4.4		
Incr Delay (d2), s/veh	4.3	0.0	0.4	0.4	0.1	0.2		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.2	0.0	0.9	1.0	0.2	0.9		
Jnsig. Movement Delay, s/vel	1							
LnGrp Delay(d),s/veh	19.9	0.0	4.8	4.8	7.2	4.6		
LnGrp LOS	В	Α	Α	Α	Α	Α		
Approach Vol, veh/h	145		1137			1143		
Approach Delay, s/veh	19.9		4.8			4.7		
Approach LOS	В		A			Α		
			,,					
Timer - Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				27.3		9.4	27.3	
Change Period (Y+Rc), s				5.5		5.0	5.5	
Max Green Setting (Gmax), s				49.5		30.0	49.5	
Max Q Clear Time (g_c+I1), s				11.1		5.0	8.8	
Green Ext Time (p_c), s				10.7		0.4	9.3	
Intersection Summary								
HCM 6th Ctrl Delay			5.6					
HCM 6th LOS			Α					
Notes								

User approved volume balancing among the lanes for turning movement.

EX_AM 9:13 am 01/10/2023 Synchro 11 Report

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR
Traffic Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Fluture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Fluture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Fluture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Fluture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Fluture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Fluture Volume (veh/h) 80 80 864 114 250 1580 300 123 645 271 249 716 120 Fluture Volume (veh/h) 80 80 80 80 80 80 80 80 80 80 80 80 80
Traffic Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Feture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Feture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Feture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Feture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Feture Volume (veh/h) 80 864 114 250 1580 300 123 645 271 249 716 120 Feture Volume (veh/h) 80 80 864 114 250 1580 300 123 645 271 249 716 120 Feture Volume (veh/h) 80 80 80 80 80 80 80 80 80 80 80 80 80
Initial Q (Qb), veh 0
Ped-Bike Adj(A_pbT) 1.00
Parking Bus, Adj
Work Zone On Ápproach No No No No No No No Adj Sat Flow, veh/h/lin 1870 <th< td=""></th<>
Adj Sat Flow, veh/h/ln
Adj Flow Rate, veh/h 84 909 99 263 1663 134 129 679 158 262 754 114 Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Peak Hour Factor 0.95 0.25 6.8 1.00 0.08 0.09 0.29 0.29 0.29
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cap, veh/h 216 2151 231 302 2493 613 155 1007 459 316 889 134 Arrive On Green 0.06 0.36 0.36 0.09 0.39 0.39 0.09 0.28 0.28 0.09 0.29 0.29 Sat Flow, veh/h 3456 5932 638 3456 6434 1583 1781 3554 1621 3456 3088 467 Grp Volume(v), veh/h 84 737 271 263 1663 134 129 679 158 262 434 434 Grp Sat Flow(s), veh/h/h/ln/728 1609 1745 1728 1609 1583 1781 1777 1621 1728 1777 1777 Q Serve(g_s), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Cycle Q Clear(g_c), s 2.8 13.8 14.1 9.0 25.6 6.8
Arrive On Green
Sat Flow, veh/h 3456 5932 638 3456 6434 1583 1781 3554 1621 3456 3088 467 Grp Volume(v), veh/h 84 737 271 263 1663 134 129 679 158 262 434 434 Grp Sat Flow(s), veh/h/In1728 1609 1745 1728 1609 1583 1781 1777 1621 1728 1777 1777 Q Serve(g_s), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Cycle Q Clear(g_c), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Cycle Q Clear(g_c), seh/h 216 1749 633 302 2493 613 155 1007 459 316 512 512 V/C Ratio(X) 0.39 0.42 0.43 0.87 0.67 0.22
Grp Volume(v), veh/h 84 737 271 263 1663 134 129 679 158 262 434 434 Grp Sat Flow(s),veh/h/ln1728 1609 1745 1728 1609 1583 1781 1777 1621 1728 1777 1777 Q Serve(g_s), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Cycle Q Clear(g_c), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Prop In Lane 1.00 0.37 1.00 1.00 1.00 1.00 1.00 0.26 Lane Grp Cap(c), veh/h 216 1749 633 302 2493 613 155 1007 459 316 512 512 V/C Ratio(X) 0.39 0.42 0.43 0.87 0.67 0.22 0.83 0.67 0.34 0.83 0.85 0.85 Avail Cap(c_a), veh/h 302 1749 633 302 2493 613 171 1140 520 331 570 570 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Grp Sat Flow(s),veh/h/ln1728 1609 1745 1728 1609 1583 1781 1777 1621 1728 1777 1777 Q Serve(g_s), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Cycle Q Clear(g_c), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Prop In Lane 1.00 0.37 1.00 1.00 1.00 1.00 0.26 Lane Grp Cap(c), veh/h 216 1749 633 302 2493 613 155 1007 459 316 512 512 V/C Ratio(X) 0.39 0.42 0.43 0.87 0.67 0.22 0.83 0.67 0.34 0.83 0.85 0.85 Avail Cap(c_a), veh/h 302 1749 633 302 2493 613 171 1140 520 331 570 570 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Q Serve(g_s), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Cycle Q Clear(g_c), s 2.8 13.8 14.1 9.0 25.6 6.8 8.6 20.3 9.3 8.9 27.6 27.6 Prop In Lane 1.00 0.37 1.00 1.00 1.00 1.00 1.00 0.26 Lane Grp Cap(c), veh/h 216 1749 633 302 2493 613 155 1007 459 316 512 512 V/C Ratio(X) 0.39 0.42 0.43 0.87 0.67 0.22 0.83 0.67 0.34 0.83 0.85 0.85 Avail Cap(c_a), veh/h 302 1749 633 302 2493 613 171 1140 520 331 570 570 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td< td=""></td<>
Cycle Q Clear(g_c), s
Prop In Lane
Lane Grp Cap(c), veh/h 216 1749 633 302 2493 613 155 1007 459 316 512 512 V/C Ratio(X) 0.39 0.42 0.43 0.87 0.67 0.22 0.83 0.67 0.34 0.83 0.85 0.85 Avail Cap(c_a), veh/h 302 1749 633 302 2493 613 171 1140 520 331 570 570 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
V/C Ratio(X) 0.39 0.42 0.43 0.87 0.67 0.22 0.83 0.67 0.34 0.83 0.85 0.85 Avail Cap(c_a), veh/h 302 1749 633 302 2493 613 171 1140 520 331 570 570 HCM Platoon Ratio 1.00
Avail Cap(c_a), veh/h 302 1749 633 302 2493 613 171 1140 520 331 570 570 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
HCM Platoon Ratio 1.00 1.
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Uniform Delay (d), s/veh 54.0 28.8 28.9 54.1 30.4 24.6 53.9 38.1 34.1 53.6 40.2 40.2 Incr Delay (d2), s/veh 0.4 0.7 2.1 22.0 1.4 0.8 24.2 1.8 0.8 11.8 9.6 9.6 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Incr Delay (d2), s/veh
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
%ile BackOfQ(50%),veh/lnl.2 5.2 6.0 4.7 9.7 2.7 4.8 9.0 3.7 4.4 13.2 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 54.5 29.5 31.0 76.1 31.8 25.4 78.2 39.9 34.9 65.4 49.8 49.9 LnGrp LOS D C C E C C E D C E D D
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 54.5 29.5 31.0 76.1 31.8 25.4 78.2 39.9 34.9 65.4 49.8 49.9 LnGrp LOS D C C E C C E D C E D D
LnGrp Delay(d),s/veh 54.5 29.5 31.0 76.1 31.8 25.4 78.2 39.9 34.9 65.4 49.8 49.9 LnGrp LOS D C E C C E D C D D
LnGrp LOS D C C E C C E D C E D D
the state of the s
Approach Vol, veh/h 1092 2060 966 1130
Approach Delay, s/veh 31.8 37.0 44.2 53.4
Approach LOS C D D D
Timer - Assigned Phs 1 2 3 4 5 6 7 8
Phs Duration (G+Y+Rc), \$6.0 49.0 14.9 40.1 13.0 52.0 15.5 39.5
Change Period (Y+Rc), s 5.5 5.5 4.5 5.5 5.5 5.5 5.5 5.5
Max Green Setting (Gmat/0), \$ 38.5 11.5 38.5 10.5 38.5 11.5 38.5
Max Q Clear Time (g_c+lff1),0s 16.1 10.6 29.6 4.8 27.6 10.9 22.3
Green Ext Time (p_c), s 0.0 10.1 0.0 5.0 0.0 9.3 0.0 7.0
Intersection Summary
HCM 6th Ctrl Delay 40.8
HCM 6th LOS D

EX_AM 9:13 am 01/10/2023 Synchro 11 Report Page 5

,	•	→	*	•	←	•	1	†	1	1	Ţ	1	
Movement EE	3L	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	Ť	4111		44	1111	7	*	^	7	14	†		
	80	864	114	250	1580	300	123	645	271	249	716	120	
Future Volume (veh/h)	80	864	114	250	1580	300	123	645	271	249	716	120	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.0	00		0.99	1.00		1.00	1.00		0.98	1.00		0.98	
Parking Bus, Adj 1.0	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No			No			No			No		
Adj Sat Flow, veh/h/ln 187	70	1870	1870	1870	1870	1870	1870	1870	1945	1870	1870	1870	
Adj Flow Rate, veh/h	87	939	102	272	1717	138	134	701	163	271	778	118	
Peak Hour Factor 0.9		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h 2°	18	2101	226	302	2436	599	160	1029	469	324	906	137	
Arrive On Green 0.0	06	0.35	0.35	0.09	0.38	0.38	0.09	0.29	0.29	0.09	0.29	0.29	
Sat Flow, veh/h 345	56	5933	637	3456	6434	1583	1781	3554	1621	3456	3086	468	
Grp Volume(v), veh/h	87	762	279	272	1717	138	134	701	163	271	448	448	
Grp Sat Flow(s), veh/h/ln172	28	1609	1745	1728	1609	1583	1781	1777	1621	1728	1777	1777	
Q Serve(g_s), s 2	2.9	14.5	14.8	9.4	27.1	7.1	8.9	21.0	9.5	9.3	28.6	28.6	
Cycle Q Clear(g_c), s 2	2.9	14.5	14.8	9.4	27.1	7.1	8.9	21.0	9.5	9.3	28.6	28.6	
Prop In Lane 1.0	00		0.37	1.00		1.00	1.00		1.00	1.00		0.26	
Lane Grp Cap(c), veh/h 2	18	1709	618	302	2436	599	160	1029	469	324	522	522	
V/C Ratio(X) 0.4	40	0.45	0.45	0.90	0.70	0.23	0.84	0.68	0.35	0.84	0.86	0.86	
Avail Cap(c_a), veh/h 30	02	1709	618	302	2436	599	171	1140	520	331	570	570	
HCM Platoon Ratio 1.0	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.0	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	
Uniform Delay (d), s/veh 54	1.0	29.7	29.8	54.2	31.6	25.4	53.8	37.7	33.7	53.5	40.0	40.0	
Incr Delay (d2), s/veh 0).4	0.8	2.4	27.1	1.7	0.9	26.0	1.9	0.8	12.8	10.5	10.5	
Initial Q Delay(d3),s/veh 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln1	.2	5.5	6.4	5.1	10.3	2.8	5.1	9.3	3.8	4.6	13.8	13.8	
Unsig. Movement Delay, s/	veh												
LnGrp Delay(d),s/veh 54	.5	30.6	32.2	81.4	33.3	26.3	79.7	39.6	34.4	66.2	50.5	50.6	
LnGrp LOS	D	С	С	F	С	С	Е	D	С	Е	D	D	
Approach Vol, veh/h		1128			2127			998			1167		
Approach Delay, s/veh		32.8			39.0			44.2			54.2		
Approach LOS		С			D			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$6		48.0	15.3	40.7	13.1	50.9	15.8	40.2					
Change Period (Y+Rc), s 5		5.5	4.5	5.5	5.5	5.5	4.5	5.5					
Max Green Setting (Gmax)		38.5	11.5	38.5	10.5	38.5	11.5	38.5					
Max Q Clear Time (g_c+lf1)		16.8	10.9	30.6	4.9	29.1	11.3	23.0					
Green Ext Time (p_c), s 0		10.3	0.0	4.7	0.0	8.2	0.0	7.1					
Intersection Summary													
HCM 6th Ctrl Delay			41.9										
HCM 6th LOS													

	•	•	†	-	-	ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	*	7	ተተጉ		*	^			
Traffic Volume (veh/h)	121	118	1132	163	100	764			
Future Volume (veh/h)	121	118	1132	163	100	764			
Initial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach	No		No			No			
Adj Sat Flow, veh/h/ln	1885	1961	1885	1885	1885	1885			
Adj Flow Rate, veh/h	123	23	1155	150	102	780			
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98			
Percent Heavy Veh, %	1	1	1	1	1	1			
Cap, veh/h	159	147	3373	438	414	2907			
Arrive On Green	0.09	0.09	0.73	0.73	0.04	0.81			
Sat Flow, veh/h	1795	1662	4765	596	1795	3676			
Grp Volume(v), veh/h	123	23	862	443	102	780	<u>-</u> -		
Grp Sat Flow(s),veh/h/ln	1795	1662	1716	1760	1795	1791			
Q Serve(g_s), s	6.7	1.3	8.9	8.9	1.3	5.2			
Cycle Q Clear(g_c), s	6.7	1.3	8.9	8.9	1.3	5.2			
Prop In Lane	1.00	1.00		0.34	1.00				
ane Grp Cap(c), veh/h	159	147	2518	1292	414	2907			
//C Ratio(X)	0.78	0.16	0.34	0.34	0.25	0.27			
Avail Cap(c_a), veh/h	377	349	2518	1292	544	2907			
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00			
Jpstream Filter(I)	1.00	1.00	0.59	0.59	1.00	1.00			
Jniform Delay (d), s/veh	44.6	42.1	4.7	4.7	3.1	2.3			
ncr Delay (d2), s/veh	7.9	0.5	0.2	0.4	0.1	0.2			
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	3.3	0.5	2.5	2.7	0.3	1.2			
Insig. Movement Delay, s/veh									
_nGrp Delay(d),s/veh	52.5	42.6	4.9	5.2	3.2	2.5			
nGrp LOS	D	D	Α	Α	Α	Α			
Approach Vol, veh/h	146		1305			882			
Approach Delay, s/veh	50.9		5.0			2.6			
Approach LOS	D		Α			Α			
Timer - Assigned Phs		2		4			7	8	
Phs Duration (G+Y+Rc), s		13.8		86.2			7.8	78.4	
Change Period (Y+Rc), s		5.0		5.0			4.0	5.0	
Max Green Setting (Gmax), s		21.0		69.0			11.0	54.0	
Max Q Clear Time (g_c+l1), s		8.7		7.2			3.3	10.9	
Green Ext Time (p_c), s		0.3		9.5			0.0	7.0	
Intersection Summary									
HCM 6th Ctrl Delay			7.0						
HCM 6th LOS			A						

	۶	→	•	•	←	•	1	†	*	-	ţ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		٦	^	7	*	1		*	†		
Traffic Volume (veh/h)	139	108	144	30	54	29	110	1132	54	36	770	88	
Future Volume (veh/h)	139	108	144	30	54	29	110	1132	54	36	770	88	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.97	1.00		0.99	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	:h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1961	1885	1885	1885	1885	1885	1885	
Adj Flow Rate, veh/h	142	110	113	31	55	10	112	1155	50	37	786	78	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1	
Cap, veh/h	257	167	144	450	551	485	370	1749	76	267	1647	163	
Arrive On Green	0.29	0.29	0.29	0.29	0.29	0.29	0.50	0.50	0.50	0.50	0.50	0.50	
Sat Flow, veh/h	524	570	491	1166	1885	1658	644	3492	151	467	3288	326	
Grp Volume(v), veh/h	365	0	0	31	55	10	112	592	613	37	428	436	
Grp Sat Flow(s), veh/h/lr	า1585	0	0	1166	1885	1658	644	1791	1853	467	1791	1823	
Q Serve(g_s), s	8.3	0.0	0.0	0.0	1.0	0.2	6.7	11.9	11.9	3.1	7.6	7.6	
Cycle Q Clear(g_c), s	10.1	0.0	0.0	1.1	1.0	0.2	14.3	11.9	11.9	15.1	7.6	7.6	
Prop In Lane	0.39		0.31	1.00		1.00	1.00		0.08	1.00		0.18	
Lane Grp Cap(c), veh/h	567	0	0	450	551	485	370	897	928	267	897	913	
V/C Ratio(X)	0.64	0.00	0.00	0.07	0.10	0.02	0.30	0.66	0.66	0.14	0.48	0.48	
Avail Cap(c_a), veh/h	979	0	0	759	1052	925	473	1184	1225	342	1184	1205	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	า 15.6	0.0	0.0	12.5	12.5	12.2	12.6	9.0	9.0	14.6	7.9	7.9	
Incr Delay (d2), s/veh	1.2	0.0	0.0	0.1	0.1	0.0	0.5	0.8	0.8	0.2	0.4	0.4	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/ln3.3	0.0	0.0	0.2	0.4	0.1	0.8	3.4	3.5	0.3	2.1	2.2	
Unsig. Movement Delay	, s/veh												
LnGrp Delay(d),s/veh	16.8	0.0	0.0	12.6	12.6	12.2	13.1	9.8	9.8	14.9	8.3	8.3	
LnGrp LOS	В	Α	Α	В	В	В	В	Α	Α	В	Α	Α	
Approach Vol, veh/h		365			96			1317			901		
Approach Delay, s/veh		16.8			12.5			10.1			8.6		
Approach LOS		В			В			В			Α		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)	· s	19.2		29.2		19.2		29.2					
Change Period (Y+Rc),		5.0		5.0		5.0		5.0					
Max Green Setting (Gm		27.0		32.0		27.0		32.0					
Max Q Clear Time (g. c.		3.1		17.1		12.1		16.3					
Green Ext Time (p_c), s	, .	0.4		5.1		2.0		8.0					
" ,		0.4		J. I		2.0		0.0					
Intersection Summary			40.0										
HCM 6th Ctrl Delay			10.6										
HCM 6th LOS			В										

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		7	^	†	
Traffic Vol, veh/h	8	30	43	1204	859	32
Future Vol, veh/h	8	30	43	1204	859	32
Conflicting Peds, #/hr	0	0	3	0	0	3
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	1	1	1	1	1	1
Mymt Flow	8	31	45	1254	895	33
WIVING TOW	•	O1	10	1201	000	00
Major/Minor	Minor2	N	Major1	Λ	/lajor2	
Conflicting Flow All	1632	467	931	0	-	0
Stage 1	915	-	-	-	-	-
Stage 2	717	-	-	-	-	-
Critical Hdwy	6.82	6.92	4.12	-	-	-
Critical Hdwy Stg 1	5.82	-	_	-	_	-
Critical Hdwy Stg 2	5.82	_	_	_	_	_
Follow-up Hdwy	3.51	3.31	2.21	_	_	_
Pot Cap-1 Maneuver	93	545	737	_	_	_
Stage 1	353	-	-	_	_	_
Stage 2	447	_		_	_	_
Platoon blocked, %	771	_		<u>-</u>	_	_
	07	543	735			-
Mov Cap-1 Maneuver				-		
Mov Cap-2 Maneuver	87	-	-	-	-	-
Stage 1	330	-	-	-	-	-
Stage 2	446	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	21.5		0.4		0	
HCM LOS	C C		0.7		U	
TIOWI LOG	U					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		735	_	258	-	-
HCM Lane V/C Ratio		0.061	_	0.153	-	_
HCM Control Delay (s)	10.2	_	21.5	-	-
HCM Lane LOS		В	-	С	_	-
HCM 95th %tile Q(veh)	0.2	_	0.5	_	_
TOW JOHN JUNE Q(VEI	7	٥.٢		0.0		

	1	•	†	-	1	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		^		*	^	
Traffic Volume (veh/h)	70	58	1307	107	65	809	
Future Volume (veh/h)	70	58	1307	107	65	809	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	0.99	•	0.99	1.00	· ·	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	No	1.00	1.00	No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	
Adj Flow Rate, veh/h	74	29	1390	110	69	861	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	1	1	1	1	1	1	
Cap, veh/h	116	45	2186	172	317	2330	
Sap, venim Arrive On Green	0.09	0.09	0.65	0.65	0.65	0.65	
	1232		3456	265	353	3676	
Sat Flow, veh/h		483					
Grp Volume(v), veh/h	104	0	738	762	69	861	
Grp Sat Flow(s),veh/h/ln	1731	0	1791	1836	353	1791	
Q Serve(g_s), s	2.4	0.0	10.1	10.2	6.0	4.5	
Cycle Q Clear(g_c), s	2.4	0.0	10.1	10.2	16.2	4.5	
Prop In Lane	0.71	0.28		0.14	1.00		
_ane Grp Cap(c), veh/h	162	0	1165	1194	317	2330	
V/C Ratio(X)	0.64	0.00	0.63	0.64	0.22	0.37	
Avail Cap(c_a), veh/h	1265	0	2159	2213	513	4318	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	17.9	0.0	4.3	4.3	9.1	3.3	
ncr Delay (d2), s/veh	4.2	0.0	0.6	0.6	0.3	0.1	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.0	0.0	1.3	1.3	0.3	0.5	
Unsig. Movement Delay, s/veh	1						
LnGrp Delay(d),s/veh	22.1	0.0	4.8	4.9	9.5	3.4	
LnGrp LOS	С	Α	A	A	Α	Α	
Approach Vol, veh/h	104		1500			930	
Approach Delay, s/veh	22.1		4.9			3.9	
Approach LOS	C		Α.			Α	
			71				_
Timer - Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				32.2		8.9	32.2
Change Period (Y+Rc), s				5.5		5.0	5.5
Max Green Setting (Gmax), s				49.5		30.0	49.5
Max Q Clear Time (g_c+l1), s				18.2		4.4	12.2
Green Ext Time (p_c), s				8.5		0.3	14.4
ntersection Summary							
HCM 6th Ctrl Delay			5.2				
HCM 6th LOS			Α				
Notes							

User approved volume balancing among the lanes for turning movement.

	۶	→	*	•	←	•	1	†	1	-	ţ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	44	4111		14	1111	7	7	^	7	14	†		
Traffic Volume (veh/h)	213	1467	143	161	1274	379	145	754	295	234	479	125	
Future Volume (veh/h)	213	1467	143	161	1274	379	145	754	295	234	479	125	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.98	1.00		0.96	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No	100-	400=	No	100=	100=	No	1001	100-	No	100=	
	1885	1885	1885	1885	1885	1885	1885	1885	1961	1885	1885	1885	
Adj Flow Rate, veh/h	222	1528	135	168	1327	236	151	785	188	244	499	109	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1	
Cap, veh/h	276	2341	207	231	2405	579	178	1036	463	298	806	175	
Arrive On Green	0.08	0.38	0.38	0.07	0.37	0.37	0.10	0.29	0.29	0.09	0.28	0.28	
•	3483	6104	539	3483	6485	1561	1795	3582	1599	3483	2924	635	
Grp Volume(v), veh/h	222	1217	446	168	1327	236	151	785	188	244	305	303	
Grp Sat Flow(s), veh/h/lr		1621	1779	1742	1621	1561	1795	1791	1599	1742	1791	1768	
Q Serve(g_s), s	7.5	24.7	24.7	5.7	19.4	13.4	9.9	23.9	11.4	8.3	17.8	18.0	
Cycle Q Clear(g_c), s	7.5	24.7	24.7	5.7	19.4	13.4	9.9	23.9	11.4	8.3	17.8	18.0	
Prop In Lane	1.00		0.30	1.00		1.00	1.00		1.00	1.00		0.36	
Lane Grp Cap(c), veh/h		1866	682	231	2405	579	178	1036	463	298	494	488	
V/C Ratio(X)	0.81	0.65	0.65	0.73	0.55	0.41	0.85	0.76	0.41	0.82	0.62	0.62	
Avail Cap(c_a), veh/h	276	1866	682	276	2405	579	232	1149	513	305	500	494	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.94	0.94	
Uniform Delay (d), s/veh		30.4	30.4	54.9	29.9	28.0	53.2	38.8	34.3	53.9	37.9	38.0	
Incr Delay (d2), s/veh	14.8	1.8	4.8	5.6	0.9	2.1	16.3	3.2	1.0	13.8	2.8	2.9	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		9.5	11.0	2.6	7.4	5.3	5.2	10.8	4.5	4.2	8.1	8.1	
Unsig. Movement Delay													
LnGrp Delay(d),s/veh	69.1	32.2	35.2	60.5	30.8	30.1	69.4	42.0	35.3	67.8	40.7	40.9	
LnGrp LOS	Е	С	D	E	С	С	E	D	D	E	D	D	
Approach Vol, veh/h		1885			1731			1124			852		
Approach Delay, s/veh		37.3			33.6			44.5			48.5		
Approach LOS		D			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	, \$3.5	51.5	16.4	38.6	15.0	50.0	14.8	40.2					
Change Period (Y+Rc),		5.5	4.5	5.5	5.5	5.5	4.5	5.5					
Max Green Setting (Gm		40.5	15.5	33.5	9.5	40.5	10.5	38.5					
Max Q Clear Time (g_c-	, .	26.7	11.9	20.0	9.5	21.4	10.3	25.9					
Green Ext Time (p_c), s	, .	11.0	0.1	4.6	0.0	13.4	0.0	6.9					
Intersection Summary													
HCM 6th Ctrl Delay			39.3										
HCM 6th LOS			D										

Opening Year (2027) Conditions

•	•	†	/	/	ļ						
WBL	WBR	NBT	NBR	SBL	SBT						
ች	7	ተተ _ጉ		ሻ	^						
159	136	916	115	112	799						
159	136	916	115	112	799						
0	0	0	0	0	0						
1.00	1.00		0.97	1.00							
1.00	1.00	1.00	1.00	1.00	1.00						
No		No			No						
0.12	0.12	0.69	0.69	0.04	0.77						
1781	1648	4815	514	1781	3647						
167	16	705	366	118	841						
1781	1648	1702	1757	1781	1777						
8.2	8.0	7.4	7.4	1.6	6.3						
	0.8	7.4			6.3						
	1.00										
	192	2335									
	0.08	0.30									
4.0	0.3	2.2	2.4	0.4	1.5						
	D		A	A							
D		А			Α						
	2		4			7	8				
	15.5		74.5			7.8	66.7				
	5.0		5.0			4.0	5.0				
	21.0		59.0			11.0	44.0				
	10.2		8.3			3.6	9.4				
	0.4		10.4			0.0	5.2				
		8.1									
	159 159 0 1.00 1.00 No 1870 167 0.95 2 207 0.12 1781 167 1781	159 136 159 136 0 0 1.00 1.00 1.00 1.00 No 1870 1945 167 16 0.95 0.95 2 2 207 192 0.12 0.12 1781 1648 167 16 1781 1648 8.2 0.8 8.2 0.8 1.00 1.00 207 192 0.81 0.08 416 385 1.00 1.00 1.00 1.00 38.8 35.5 7.2 0.2 0.0 0.0 4.0 0.3 46.0 35.7 D D 183 45.1 D 2 15.5 5.0 21.0 10.2	159 136 916 159 136 916 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1870 1945 1870 167 16 964 0.95 0.95 0.95 2 2 2 207 192 3188 0.12 0.12 0.69 1781 1648 4815 167 16 705 1781 1648 1702 8.2 0.8 7.4 8.2 0.8 7.4 1.00 1.00 207 192 2335 0.81 0.08 0.30 416 385 2335 1.00	159 136 916 115 159 136 916 115 0 0 0 0 0 1.00 1.00	159	159 136 916 115 112 799 159 136 916 115 112 799 0 0 0 0 0 0 0 0 0 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1870 1945 1870 1870 1870 1870 167 16 964 107 118 841 0.95 0.95 0.95 0.95 0.95 2 2 2 2 2 2 207 192 3188 353 473 2745 0.12 0.12 0.69 0.69 0.04 0.77 1781 1648 4815 514 1781 3647 167 16 705 366 118 841 1781 1648 1702 1757 1781 1777 8.2 0.8 7.4 7.4 1.6 6.3 1.00 1.00 0.29 1.00 207 192 2335 1205 473 2745 0.81 0.08 0.30 0.30 0.25 0.31 416 385 2335 1205 615 2745 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	159	159	159	159	159 136 916 115 112 799 159 136 916 115 112 799 0

	ၨ	→	\rightarrow	•	←	•	•	†	/	>	↓	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		*	†	7		ħβ			ħβ		
Traffic Volume (veh/h)	106	61	204	35	67	21	125	903	31	11	839	112	
Future Volume (veh/h)	106	61	204	35	67	21	125	903	31	11	839	112	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		0.97	1.00		0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1945	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	112	64	153	37	71	6	132	951	30	12	883	103	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	213	113	201	422	523	455	336	1841	58	340	1674	195	
Arrive On Green	0.28	0.28	0.28	0.28	0.28	0.28	0.52	0.52	0.52	0.52	0.52	0.52	
Sat Flow, veh/h	423	404	719	1156	1870	1625	570	3512	111	573	3193	373	
Grp Volume(v), veh/h	329	0	0	37	71	6	132	481	500	12	491	495	
Grp Sat Flow(s), veh/h/l		0	0	1156	1870	1625	570	1777	1846	573	1777	1789	
Q Serve(g_s), s	7.3	0.0	0.0	0.0	1.4	0.1	10.1	9.0	9.0	0.7	9.3	9.3	
Cycle Q Clear(g_c), s	9.8	0.0	0.0	1.5	1.4	0.1	19.4	9.0	9.0	9.7	9.3	9.3	
Prop In Lane	0.34		0.47	1.00		1.00	1.00		0.06	1.00		0.21	
Lane Grp Cap(c), veh/h		0	0	422	523	455	336	931	968	340	931	938	
V/C Ratio(X)	0.62	0.00	0.00	0.09	0.14	0.01	0.39	0.52	0.52	0.04	0.53	0.53	
Avail Cap(c_a), veh/h	904	0	0	711	990	861	395	1115	1159	399	1115	1123	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/ve		0.0	0.0	13.8	13.7	13.3	14.4	7.9	7.9	11.1	8.0	8.0	
Incr Delay (d2), s/veh	1.2	0.0	0.0	0.1	0.1	0.0	0.7	0.4	0.4	0.0	0.5	0.5	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),ve		0.0	0.0	0.3	0.6	0.0	1.1	2.5	2.6	0.1	2.6	2.6	
Unsig. Movement Delay													
LnGrp Delay(d),s/veh	17.9	0.0	0.0	13.9	13.9	13.3	15.1	8.4	8.3	11.1	8.4	8.4	
LnGrp LOS	В	Α	A	В	В	B	В	Α	Α	В	Α	Α	
Approach Vol, veh/h		329			114			1113			998		
Approach Delay, s/veh		17.9			13.8			9.2			8.5		
Approach LOS		В			В			Α			Α		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc), s	19.3		31.7		19.3		31.7					
Change Period (Y+Rc),	, .	5.0		5.0		5.0		5.0					
Max Green Setting (Gr		27.0		32.0		27.0		32.0					
Max Q Clear Time (g_c		3.5		11.7		11.8		21.4					
Green Ext Time (p_c), s		0.5		6.5		1.8		5.3					
Intersection Summary													
HCM 6th Ctrl Delay			10.2										
HCM 6th LOS			В										
I IOW OUI LOO			В										

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		LDK				אמט
Lane Configurations	, M	00	<u>ነ</u>	^	↑ }	47
Traffic Vol, veh/h	6	86	40	1052	1002	17
Future Vol, veh/h	6	86	40	1052	1002	17
Conflicting Peds, #/hr		0	3	0	0	3
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storag	e,# 0	-	-	0	0	-
Grade, %	0	_	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	6	91	42	1107	1055	18
IVIVIII(I IOW	U	31	72	1101	1000	10
Major/Minor	Minor2	N	//ajor1	N	//ajor2	
Conflicting Flow All	1705	540	1076	0		0
Stage 1	1067	-	-	_	_	-
Stage 2	638	<u>-</u>	_	_	_	_
Critical Hdwy	6.84	6.94	4.14	_	_	_
	5.84		4.14			
Critical Hdwy Stg 1		-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	82	486	644	-	-	-
Stage 1	292	-	-	-	-	-
Stage 2	488	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	76	485	642	-	-	-
Mov Cap-2 Maneuver		-	-	-	_	-
Stage 1	272	_	_	-	_	-
Stage 2	487	<u>-</u>	_	_	_	_
Olago Z	-107					
Approach	EB		NB		SB	
HCM Control Delay, s	18.7		0.4		0	
HCM LOS	С					
Minor Lane/Major Mvi	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		642	-	359	-	-
HCM Lane V/C Ratio		0.066	-	0.27	-	-
HCM Control Delay (s	s)	11	-	18.7	-	-
HCM Lane LOS	,	В	_	С	_	_
HCM 95th %tile Q(vel	n)	0.2	_	1.1	_	_
TOWN JOHN JOHN Q VOI	'/	0.2		1.1		

	•	•	†	/	>	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		† ‡	7,12,17	*	^		
Traffic Volume (veh/h)	102	60	1016	55	44	1030		
Future Volume (veh/h)	102	60	1016	55	44	1030		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	0.99	•	0.99	1.00	•		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	No	1.00	1.00	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	107	35	1069	54	46	1070		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	152	50	2035	103	403	2102		
Cap, ven/n Arrive On Green	0.12	0.12	0.59	0.59	0.59	0.59		
Sat Flow, veh/h	1292	423	3534	174	501	3647		
Grp Volume(v), veh/h	143	0	552	571	46	1084		
Grp Sat Flow(s),veh/h/ln	1726	0	1777	1838	501	1777		
Q Serve(g_s), s	2.9	0.0	6.7	6.7	2.2	6.5		
Cycle Q Clear(g_c), s	2.9	0.0	6.7	6.7	8.8	6.5		
Prop In Lane	0.75	0.24		0.09	1.00			
_ane Grp Cap(c), veh/h	204	0	1051	1087	403	2102		
//C Ratio(X)	0.70	0.00	0.53	0.53	0.11	0.52		
Avail Cap(c_a), veh/h	1433	0	2434	2518	793	4868		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00		
Jniform Delay (d), s/veh	15.3	0.0	4.4	4.4	7.0	4.3		
Incr Delay (d2), s/veh	4.4	0.0	0.4	0.4	0.1	0.2		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.2	0.0	0.9	0.9	0.2	8.0		
Unsig. Movement Delay, s/vel	1							
LnGrp Delay(d),s/veh	19.7	0.0	4.8	4.8	7.1	4.5		
LnGrp LOS	В	Α	Α	Α	Α	Α		
Approach Vol, veh/h	143		1123			1130		
Approach Delay, s/veh	19.7		4.8			4.6		
Approach LOS	В		A			A		
•			, ,					
Timer - Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				26.9		9.3	26.9	
Change Period (Y+Rc), s				5.5		5.0	5.5	
Max Green Setting (Gmax), s				49.5		30.0	49.5	
Max Q Clear Time (g_c+I1), s				10.8		4.9	8.7	
Green Ext Time (p_c), s				10.5		0.4	9.1	
Intersection Summary								
HCM 6th Ctrl Delay			5.6					
HCM 6th LOS			Α					
Notes								

User approved volume balancing among the lanes for turning movement.

٠	→	•	•	←	•	4	†	/	>	ţ	√	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations ***	4111		1/1	1111	7	ķ	^	7	1,1	ħβ		
Traffic Volume (veh/h) 83	918	130	255	1612	306	125	658	276	254	730	124	
Future Volume (veh/h) 83	918	130	255	1612	306	125	658	276	254	730	124	
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.00		0.99	1.00		1.00	1.00		0.98	1.00		0.98	
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	10-0	40-0	No	40=0	10-0	No	10.1=	40=0	No	40=0	
•	1870	1870	1870	1870	1870	1870	1870	1945	1870	1870	1870	
Adj Flow Rate, veh/h 87	966	117	268	1697	140	132	693	164	267	768	118	
Peak Hour Factor 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, % 2	2	2	2	2	2	2	2	2	2	2	2	
	2092	250	302	2456	604	158	1022	466	321	898	138	
Arrive On Green 0.06	0.36	0.36	0.09	0.38	0.38	0.09	0.29	0.29	0.09	0.29	0.29	
	5857	701	3456	6434	1583	1781	3554	1621	3456	3080	473	
Grp Volume(v), veh/h 87	794	289	268	1697	140	132	693	164	267	443	443	
	1609	1732	1728	1609	1583	1781	1777	1621	1728	1777	1776	
Q Serve(g_s), s 2.9	15.2	15.5	9.2	26.6	7.2	8.8	20.7	9.6	9.1	28.2	28.2	
Cycle Q Clear(g_c), s 2.9	15.2	15.5	9.2	26.6	7.2	8.8	20.7	9.6	9.1	28.2	28.2	
Prop In Lane 1.00	1=01	0.40	1.00	0.1=0	1.00	1.00	1000	1.00	1.00	-10	0.27	
1 1 7 7	1724	619	302	2456	604	158	1022	466	321	518	518	
V/C Ratio(X) 0.40	0.46	0.47	0.89	0.69	0.23	0.84	0.68	0.35	0.83	0.85	0.86	
1 (- //	1724	619	302	2456	604	171	1140	520	331	570	570	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	0.81	0.81	
Uniform Delay (d), s/veh 54.0	29.7	29.8	54.2	31.2	25.2	53.8	37.8	33.9	53.5	40.1	40.1	
Incr Delay (d2), s/veh 0.4	0.9	2.5	24.7	1.6	0.9	25.3	1.9	0.8	12.5	10.3	10.3	
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/lrl.2	5.8	6.6	4.9	10.1	2.8	5.0	9.1	3.9	4.5	13.6	13.6	
Unsig. Movement Delay, s/veh	20.0	20.2	70.0	20.0	00.4	70.4	20.7	047	00.0	50 4	FO 4	
LnGrp Delay(d),s/veh 54.5	30.6	32.3	78.9	32.8	26.1	79.1	39.7	34.7	66.0	50.4	50.4	
LnGrp LOS D	C	С	E	C	С	E	D	С	E	D	D	
• •	1170			2105			989			1153		
Approach Delay, s/veh	32.8			38.2			44.1			54.0		
Approach LOS	С			D			D			D		
Timer - Assigned Phs 1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$6.0	48.4	15.1	40.5	13.1	51.3	15.6	40.0					
Change Period (Y+Rc), s 5.5	5.5	4.5	5.5	5.5	5.5	4.5	5.5					
Max Green Setting (Gmatkl), 5	38.5	11.5	38.5	10.5	38.5	11.5	38.5					
Max Q Clear Time (g_c+lf11),2s	17.5	10.8	30.2	4.9	28.6	11.1	22.7					
Green Ext Time (p_c), s 0.0	10.5	0.0	4.8	0.0	8.7	0.0	7.1					
Intersection Summary												
HCM 6th Ctrl Delay												
How our our boldy		41.5										

	•	•	†	<i>></i>	>	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	ተተኈ		ሻ	^	
Traffic Volume (veh/h)	128	120	1156	171	102	779	
Future Volume (veh/h)	128	120	1156	171	102	779	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1885	1961	1885	1885	1885	1885	
Adj Flow Rate, veh/h	135	11	1217	165	107	820	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	1	1	1	1	1	1	
Cap, veh/h	170	157	3322	450	388	2885	
Arrive On Green	0.09	0.09	0.73	0.73	0.04	0.81	
Sat Flow, veh/h	1795	1662	4737	619	1795	3676	
Grp Volume(v), veh/h	135	11	914	468	107	820	
Grp Sat Flow(s),veh/h/ln	1795	1662	1716	1755	1795	1791	
Q Serve(g_s), s	7.4	0.6	9.9	9.9	1.4	5.8	
Cycle Q Clear(g_c), s	7.4	0.6	9.9	9.9	1.4	5.8	
Prop In Lane	1.00	1.00		0.35	1.00		
Lane Grp Cap(c), veh/h	170	157	2496	1277	388	2885	
V/C Ratio(X)	0.79	0.07	0.37	0.37	0.28	0.28	
Avail Cap(c_a), veh/h	377	349	2496	1277	518	2885	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.54	0.54	1.00	1.00	
Uniform Delay (d), s/veh	44.3	41.3	5.1	5.1	3.4	2.5	
Incr Delay (d2), s/veh	8.1	0.2	0.2	0.4	0.1	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	3.6	0.3	2.9	3.0	0.3	1.3	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	52.4	41.4	5.3	5.5	3.6	2.7	
LnGrp LOS	D	D	Α	Α	Α	Α	
Approach Vol, veh/h	146		1382			927	
Approach Delay, s/veh	51.6		5.4			2.8	
Approach LOS	D		A			A	
Timer - Assigned Phs		2		4			7 8
Phs Duration (G+Y+Rc), s		14.5		85.5			7.8 77.7
Change Period (Y+Rc), s		5.0		5.0			4.0 5.0
Max Green Setting (Gmax), s		21.0		69.0			11.0 54.0
Max Q Clear Time (g_c+l1), s		9.4		7.8			3.4 11.9
Green Ext Time (p_c), s		0.3		10.2			0.0 7.6
. ,		0.5		10.2			0.0 1.0
Intersection Summary							
HCM 6th Ctrl Delay			7.1				
HCM 6th LOS			Α				

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR		ᄼ	-	\searrow	•	•	•	•	†	/	/	ţ	✓	
Lane Configurations	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Traffic Volume (vehth) 143 110 147 31 55 30 112 1160 55 37 790 91 Future Volume (vehth) 143 110 147 31 55 30 112 1160 55 37 790 91 Initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Future Volume (veh/h) 143 110 147 31 55 30 112 1160 55 37 790 91 Initial Q (Qb), veh		143		147						55			91	
Initial Q (Qb), veh 0	\ /													
Ped-Bike Adj(A_pbT) 1.00 </td <td>,</td> <td></td>	,													
Parking Bus, Adj					1.00		1.00	1.00						
Mork Zone On Ápproach	, , , , , , , , , , , , , , , , , , ,		1.00			1.00			1.00			1.00		
Adj Sat Flow, veh/h/ln 1885 1885 1885 1885 1885 1885 1885 188														
Adj Flow Rate, veh/h 151 116 120 33 3 58 10 118 121 53 39 832 83 Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95			1885	1885	1885	1885	1961	1885	1885	1885	1885	1885	1885	
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 Percent Heavy Veh,							10		1221		39	832	83	
Percent Heavy Veh, %		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Cap, veh/h 257 168 148 433 570 502 346 1768 77 243 1664 166 Arrive On Green 0.30 0.30 0.30 0.30 0.30 0.51 0.52 0.81 0.0 <	Percent Heavy Veh, %	1		1			1	1	1	1	1	1	1	
Arrive On Green 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.51 0.51 0.51 0.51 0.51 Sat Flow, veh/h 534 555 490 1152 1885 1658 614 3492 151 438 3286 Gry Volume(v), veh/h 387 0 0 33 58 10 118 626 648 39 453 462 Gry Sat Flow(s), veh/h/In1579 0 0 1152 1885 1658 614 1791 1823 462 Q Serve(g_s), s 9.9 0.0 0.0 1.2 0.2 8.2 13.9 13.9 3.9 8.8 8.8 Cycle Q Clear(g_c), s 11.8 0.0 0.0 1.4 1.2 0.2 17.0 13.9 13.9 13.9 8.8 8.8 Cycle Q Clear(g_c), s/eh/h 573 0 433 570 502 346 907 938 243 907 923		257	168	148	433	570	502	346	1768	77	243	1664	166	
Sat Flow, veh/h 534 555 490 1152 1885 1658 614 3492 151 438 3286 328 Gry Volume(v), veh/h 387 0 0 33 58 10 118 626 648 39 453 462 Gry Sat Flow(s), veh/h/In1579 0 0 1152 1885 1658 614 1791 1853 438 1791 1823 Oserve(g_s), s 9.9 0.0 0.0 0.0 12 0.2 82 13.9 13.9 3.9 8.8 8.8 Cycle Q Clear(g_c), s 11.8 0.0 0.0 1.4 1.2 0.2 17.0 13.9 13.9 13.9 8.8 8.8 Prop In Lane 0.39 0.31 1.00 1.00 1.00 0.0 0.08 16.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0														
Grp Volume(v), veh/h 387 0 0 33 58 10 118 626 648 39 453 462 Grp Sat Flow(s), veh/h/In1579 0 0 1152 1885 1658 614 1791 1853 438 1791 1823 Q Serve(g_s), s 9, 9, 0.0 0.0 1.2 0.2 8.2 13.9 13.9 3.9 8.8 8.8 Cycle Q Clear(g_c), s 11.8 0.0 0.0 1.4 1.2 0.2 17.0 13.9 13.9 17.8 8.8 8.8 Prop In Lane 0.39 0.31 1.00 1.00 1.00 0.08 1.00 0.18 Lane Grp Cap(c), veh/h 573 0 0 433 570 502 346 907 938 243 907 923 V/C Ratio(X) 0.67 0.00 0.00 0.08 0.10 0.02 0.34 0.69 0.69 0.69 0.16 0.50 0.50 Avail Cap(c_a), veh/h 904 0 0 679 972 855 410 1095 1132 289 1095 1114 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Grp Sat Flow(s), veh/h/ln1579														
Q Serve(g_s), s 9.9 0.0 0.0 1.2 0.2 8.2 13.9 13.9 3.9 8.8 8.8 Cycle Q Clear(g_c), s 11.8 0.0 0.0 1.4 1.2 0.2 17.0 13.9 13.9 17.8 8.8 8.8 Prop In Lane 0.39 0.31 1.00 1.00 1.00 0.08 1.00 0.18 Lane Grp Cap(c), veh/h 573 0 0 433 570 502 346 907 938 243 907 923 V/C Ratio(X) 0.67 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.05 0.50 Avail Cap(c_a), veh/h 904 0 679 972 855 410 1095 1132 289 1095 1114 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00														
Cycle Q Clear(g_c), s 11.8 0.0 0.0 1.4 1.2 0.2 17.0 13.9 13.9 17.8 8.8 8.8 Prop In Lane 0.39 0.31 1.00 1.00 1.00 0.08 1.00 0.18 Lane GPC Cap(c,) veh/h 573 0 0 433 570 502 346 907 938 243 907 923 V/C Ratio(X) 0.67 0.00 0.00 0.08 0.10 0.02 0.34 0.69 0.16 0.50 0.50 Avail Cap(c_a), veh/h 904 0 0 679 972 855 410 1095 1132 289 1095 1114 HCM Platoon Ratio 1.00														
Prop In Lane														
Lane Grp Cap(c), veh/h 573 0 0 0 433 570 502 346 907 938 243 907 923 V/C Ratio(X) 0.67 0.00 0.00 0.08 0.10 0.02 0.34 0.69 0.69 0.16 0.50 0.50 Avail Cap(c_a), veh/h 904 0 0 679 972 855 410 1095 1132 289 1095 1114 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	, ,		0.0			1.2			10.0			0.0		
V/C Ratio(X) 0.67 0.00 0.00 0.08 0.10 0.02 0.34 0.69 0.69 0.16 0.50 0.50 Avail Cap(c_a), veh/h 904 0 0 679 972 855 410 1095 1132 289 1095 1114 HCM Platoon Ratio 1.00 1			0			570			907			907		
Avail Cap(c_a), veh/h 904 0 0 679 972 855 410 1095 1132 289 1095 1114 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	,													
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	. ,													
Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.0														
Uniform Delay (d), s/veh 16.7														
Incr Delay (d2), s/veh														
Initial Q Delay(d3),s/veh														
%ile BackOfQ(50%), veh/lr8.9 0.0 0.0 0.3 0.5 0.1 1.0 4.3 4.4 0.4 2.6 2.6 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 18.1 0.0 0.0 13.3 13.2 12.8 14.7 11.2 11.2 16.9 9.0 9.0 LnGrp LOS B A A B B B B B B B A Approach Vol, veh/h 387 101 1392 954 Approach Delay, s/veh 18.1 13.2 11.5 9.3 Approach LOS B B B B A Timer - Assigned Phs 2 4 6 8 Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5														
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 18.1 0.0 0.0 13.3 13.2 12.8 14.7 11.2 11.2 16.9 9.0 9.0 LnGrp LOS B A A B B B B B B B B B A A Approach Vol, veh/h 387 101 1392 954 Approach Delay, s/veh 18.1 13.2 11.5 9.3 Approach LOS B B B B B A A Timer - Assigned Phs 2 4 6 8 Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7														
LnGrp Delay(d),s/veh 18.1 0.0 0.0 13.3 13.2 12.8 14.7 11.2 11.2 16.9 9.0 9.0 LnGrp LOS B A A B B B B B B B B B B B B B B B B B B B A A B B B B B A A B B B B A A B B B B A A B B B B B B B B B A A B B B B B B B B B B B B B B B B B A A B B B A A B B B A B B A B B A B B A B B A B B B A B B <td< td=""><td></td><td></td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.1</td><td>1.0</td><td>7.0</td><td>7.7</td><td>0.4</td><td>2.0</td><td>2.0</td><td></td></td<>				0.0	0.0	0.0	0.1	1.0	7.0	7.7	0.4	2.0	2.0	
LnGrp LOS B A A B B B B B B B B B B A Approach Vol, veh/h 387 101 1392 954 Approach Delay, s/veh 18.1 13.2 11.5 9.3 Approach LOS B B B A Timer - Assigned Phs 2 4 6 8 Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7				0.0	13.3	13.2	12.8	14 7	11 2	11 2	16.9	9.0	9.0	
Approach Vol, veh/h 387 101 1392 954 Approach Delay, s/veh 18.1 13.2 11.5 9.3 Approach LOS B B B A Timer - Assigned Phs 2 4 6 8 Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7														
Approach Delay, s/veh 18.1 13.2 11.5 9.3 Approach LOS B B B B A Timer - Assigned Phs 2 4 6 8 Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+I1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7														
Approach LOS B B B A Timer - Assigned Phs 2 4 6 8 Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+I1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7														
Timer - Assigned Phs 2 4 6 8 Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+I1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7														
Phs Duration (G+Y+Rc), s 20.8 31.5 20.8 31.5 Change Period (Y+Rc), s 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7	Approach LOS		Б			Б			Б			A		
Change Period (Y+Rc), s 5.0 5.0 5.0 5.0 Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7														
Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0 Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7	Phs Duration (G+Y+Rc)), s			31.5		20.8		31.5					
Max Q Clear Time (g_c+l1), s 3.4 19.8 13.8 19.0 Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7	Change Period (Y+Rc),	S	5.0		5.0		5.0		5.0					
Green Ext Time (p_c), s 0.4 4.9 2.0 7.5 Intersection Summary HCM 6th Ctrl Delay 11.7					32.0		27.0		32.0					
Intersection Summary HCM 6th Ctrl Delay 11.7														
HCM 6th Ctrl Delay 11.7	Green Ext Time (p_c), s	3	0.4		4.9		2.0		7.5					
HCM 6th Ctrl Delay 11.7	Intersection Summary													
				11.7										
	HCM 6th LOS													

Intersection						
Int Delay, s/veh	0.6					
	EBL	EBR	NBL	NBT	SBT	SBR
Movement		EBK				SBK
Lane Configurations	Y	21	1	^	†	22
Traffic Vol, veh/h	8	31	44	1233	880	33
Future Vol, veh/h	8	31	44	1233	880	33
Conflicting Peds, #/hr	0	0	3	0	0	3
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1
Mvmt Flow	8	33	46	1298	926	35
Major/Minor N	Minor2		Acior1		/oior?	
			Major1		/lajor2	
Conflicting Flow All	1688	484	964	0	-	0
Stage 1	947	-	-	-	-	-
Stage 2	741	-	-	-	-	-
Critical Hdwy	6.82	6.92	4.12	-	-	-
Critical Hdwy Stg 1	5.82	-	-	-	-	-
Critical Hdwy Stg 2	5.82	-	-	-	-	-
Follow-up Hdwy	3.51	3.31	2.21	-	-	-
Pot Cap-1 Maneuver	85	531	716	-	-	-
Stage 1	340	-	-	-	-	-
Stage 2	435	-	-	-	-	-
Platoon blocked, %				-	_	_
Mov Cap-1 Maneuver	79	529	714	_	_	_
Mov Cap-2 Maneuver	79	-		_	_	_
Stage 1	317	_		_	_	_
Stage 2	434	_	_	_	_	_
Slaye 2	404	-	-	-	-	
Approach	EB		NB		SB	
HCM Control Delay, s	22.7		0.4		0	
HCM LOS	С					
		NDI	NDT	EDI (00=	005
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		714	-		-	-
HCM Lane V/C Ratio		0.065		0.168	-	-
HCM Control Delay (s)		10.4	-		-	-
HCM Lane LOS		В	-	С	-	-
TION Lane LOS						
HCM 95th %tile Q(veh)		0.2	-	0.6	-	-

	•	•	†	~	\	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		^		*	^		_
Traffic Volume (veh/h)	71	59	1338	109	66	829		
Future Volume (veh/h)	71	59	1338	109	66	829		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	0.99	•	0.99	1.00	J		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	No	1.00	1.00	No		
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885		
Adj Flow Rate, veh/h	75	33	1408	111	69	873		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Percent Heavy Veh, %	1	1	1	1	1	1		
Cap, veh/h	113	50	2200	173	312	2343		
Arrive On Green	0.09	0.09	0.65	0.65	0.65	0.65		
Sat Flow, veh/h	1187	522	3457	264	346	3676		
	109		747	772	69	873		
Grp Volume(v), veh/h	1726	0	1791	1836	346	1791		
Grp Sat Flow(s),veh/h/ln	2.6	0.0	1791	10.5	6.2	4.7		
Q Serve(g_s), s								
Cycle Q Clear(g_c), s	2.6	0.0	10.4	10.5	16.7	4.7		
Prop In Lane	0.69	0.30	4470	0.14	1.00	00.40		
ane Grp Cap(c), veh/h	164	0	1172	1201	312	2343		
V/C Ratio(X)	0.66	0.00	0.64	0.64	0.22	0.37		
Avail Cap(c_a), veh/h	1236	0	2117	2170	494	4235		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00		
Jniform Delay (d), s/veh	18.3	0.0	4.3	4.3	9.3	3.3		
ncr Delay (d2), s/veh	4.6	0.0	0.6	0.6	0.4	0.1		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.1	0.0	1.4	1.4	0.4	0.6		
Jnsig. Movement Delay, s/vel								
_nGrp Delay(d),s/veh	22.9	0.0	4.9	4.9	9.7	3.4		
_nGrp LOS	С	A	Α	Α	Α	Α		_
Approach Vol, veh/h	109		1519			942		
Approach Delay, s/veh	22.9		4.9			3.9		
Approach LOS	С		Α			Α		
Гimer - Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				32.9		9.0	32.9	
Change Period (Y+Rc), s				5.5		5.0	5.5	
Max Green Setting (Gmax), s				49.5		30.0	49.5	
Max Q Clear Time (g_c+l1), s				18.7		4.6	12.5	
Green Ext Time (p_c), s				8.7		0.3	14.7	
ntersection Summary								
HCM 6th Ctrl Delay			5.3					
HCM 6th LOS			А					
Notes								

User approved volume balancing among the lanes for turning movement.

ر	•	→	•	•	←	•	•	†	/	/	↓	✓	
Movement E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	ነኝ	4111		ሻሻ	1111	7	ች	^	7	ሻሻ	ħβ		
	220	1524	156	164	1300	388	148	770	301	240	490	130	
	220	1524	156	164	1300	388	148	770	301	240	490	130	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.	.00		0.99	1.00		0.98	1.00		0.96	1.00		1.00	
Parking Bus, Adj 1.	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No			No			No			No		
	385	1885	1885	1885	1885	1885	1885	1885	1961	1885	1885	1885	
	232	1604	150	173	1368	248	156	811	197	253	516	116	
	.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1	
	276	2292	214	231	2366	570	183	1051	469	305	811	181	
	.08	0.38	0.38	0.07	0.36	0.36	0.10	0.29	0.29	0.09	0.28	0.28	
	183	6070	567	3483	6485	1561	1795	3582	1599	3483	2906	650	
	232	1285	469	173	1368	248	156	811	197	253	317	315	
Grp Sat Flow(s), veh/h/ln17	7 42	1621	1774	1742	1621	1561	1795	1791	1599	1742	1791	1766	
(O- /·	7.9	26.8	26.8	5.9	20.4	14.4	10.3	24.8	11.9	8.6	18.6	18.8	
, (O—);	7.9	26.8	26.8	5.9	20.4	14.4	10.3	24.8	11.9	8.6	18.6	18.8	
	.00		0.32	1.00		1.00	1.00		1.00	1.00		0.37	
1 1 7	276	1837	670	231	2366	570	183	1051	469	305	499	492	
	.84	0.70	0.70	0.75	0.58	0.44	0.85	0.77	0.42	0.83	0.63	0.64	
Avail Cap(c_a), veh/h 2	276	1837	670	276	2366	570	232	1149	513	305	500	493	
HCM Platoon Ratio 1.	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.93	0.93	0.93	
Uniform Delay (d), s/veh 54	4.5	31.6	31.6	55.0	30.7	28.8	53.0	38.7	34.2	53.9	37.9	38.0	
Incr Delay (d2), s/veh 19	9.3	2.2	6.0	6.8	1.0	2.4	17.7	3.5	1.0	15.4	3.1	3.2	
Initial Q Delay(d3),s/veh (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.1	10.4	12.1	2.7	7.8	5.7	5.5	11.2	4.7	4.4	8.5	8.5	
Unsig. Movement Delay, sa	/veh												
LnGrp Delay(d),s/veh 73	3.8	33.8	37.6	61.8	31.7	31.2	70.7	42.2	35.2	69.2	41.0	41.2	
LnGrp LOS	Е	С	D	E	С	С	E	D	D	E	D	D	
Approach Vol, veh/h		1986			1789			1164			885		
Approach Delay, s/veh		39.4			34.5			44.9			49.1		
Approach LOS		D			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$3	3.5	50.8	16.7	39.0	15.0	49.3	15.0	40.7					
Change Period (Y+Rc), s 5		5.5	4.5	5.5	5.5	5.5	4.5	5.5					
Max Green Setting (Gmax		40.5	15.5	33.5	9.5	40.5	10.5	38.5					
Max Q Clear Time (g_c+l1		28.8	12.3	20.8	9.9	22.4	10.6	26.8					
Green Ext Time (p_c), s (9.8	0.1	4.7	0.0	13.3	0.0	6.7					
Intersection Summary													
HCM 6th Ctrl Delay			40.5										
HCM 6th LOS			40.5 D										
LICINI OUI EOS			D										

Opening Year Plus Project Conditions

	•	•	†	<i>></i>	>	ļ				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	7	7	ተተ _ጉ		ሻ	^				
Traffic Volume (veh/h)	163	136	916	126	112	799				
Future Volume (veh/h)	163	136	916	126	112	799				
Initial Q (Qb), veh	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	No		No			No				
Adj Sat Flow, veh/h/ln	1870	1945	1870	1870	1870	1870				
Adj Flow Rate, veh/h	172	17	964	117	118	841				
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95				
Percent Heavy Veh, %	2	2	2	2	2	2				
Cap, veh/h	213	197	3139	380	467	2735				
Arrive On Green	0.12	0.12	0.68	0.68	0.04	0.77				
Sat Flow, veh/h	1781	1648	4764	556	1781	3647				
Grp Volume(v), veh/h	172	17	713	368	118	841				
Grp Sat Flow(s),veh/h/ln	1781	1648	1702	1748	1781	1777				
Q Serve(g_s), s	8.5	0.8	7.6	7.6	1.6	6.4				
Cycle Q Clear(g_c), s	8.5	0.8	7.6	7.6	1.6	6.4				
Prop In Lane	1.00	1.00		0.32	1.00					
Lane Grp Cap(c), veh/h	213	197	2325	1194	467	2735				
V/C Ratio(X)	0.81	0.09	0.31	0.31	0.25	0.31				
Avail Cap(c_a), veh/h	416	385	2325	1194	610	2735				
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter(I)	1.00	1.00	0.79	0.79	1.00	1.00				
Uniform Delay (d), s/veh	38.6	35.3	5.7	5.7	3.7	3.1				
Incr Delay (d2), s/veh	7.2	0.2	0.3	0.5	0.1	0.3				
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/ln	4.1	0.3	2.3	2.4	0.4	1.6				
Unsig. Movement Delay, s/veh	l									
LnGrp Delay(d),s/veh	45.8	35.5	6.0	6.3	3.8	3.4				
LnGrp LOS	D	D	Α	Α	Α	Α				
Approach Vol, veh/h	189		1081			959				
Approach Delay, s/veh	44.9		6.1			3.5				
Approach LOS	D		A			A				
Timer - Assigned Phs		2		4			7	8		
Phs Duration (G+Y+Rc), s		15.7		74.3			7.8	66.5		
Change Period (Y+Rc), s		5.0		5.0			4.0	5.0		
Max Green Setting (Gmax), s		21.0		59.0			11.0	44.0		
Max Q Clear Time (g_c+l1), s		10.5		8.4			3.6	9.6		
Green Ext Time (p_c), s		0.4		10.4			0.0	5.3		
.,		0.4		10.4			0.0	0.0		
Intersection Summary										
HCM 6th Ctrl Delay			8.2							
HCM 6th LOS			Α							

	۶	-	•	•	←	•	4	†	/	-	↓	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		ሻ	↑	7	ች	† \$		ች	∱ 1>		
Traffic Volume (veh/h)	107	61	204	35	67	21	125	913	31	11	843	113	
Future Volume (veh/h)	107	61	204	35	67	21	125	913	31	11	843	113	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		0.97	1.00		0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1945	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	113	64	154	37	71	6	132	961	30	12	887	104	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	213	112	202	420	525	456	334	1844	58	336	1675	196	
Arrive On Green	0.28	0.28	0.28	0.28	0.28	0.28	0.52	0.52	0.52	0.52	0.52	0.52	
Sat Flow, veh/h	426	401	719	1155	1870	1626	567	3514	110	567	3191	374	
Grp Volume(v), veh/h	331	0	0	37	71	6	132	486	505	12	494	497	
Grp Sat Flow(s), veh/h/lr	1545	0	0	1155	1870	1626	567	1777	1847	567	1777	1789	
Q Serve(g_s), s	7.4	0.0	0.0	0.0	1.5	0.1	10.3	9.2	9.2	0.7	9.4	9.4	
Cycle Q Clear(g_c), s	9.9	0.0	0.0	1.5	1.5	0.1	19.7	9.2	9.2	9.9	9.4	9.4	
Prop In Lane	0.34		0.47	1.00		1.00	1.00		0.06	1.00		0.21	
Lane Grp Cap(c), veh/h	528	0	0	420	525	456	334	932	969	336	932	939	
V/C Ratio(X)	0.63	0.00	0.00	0.09	0.14	0.01	0.40	0.52	0.52	0.04	0.53	0.53	
Avail Cap(c_a), veh/h	898	0	0	703	983	854	390	1107	1150	392	1107	1114	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	า 16.8	0.0	0.0	13.8	13.8	13.3	14.5	8.0	8.0	11.2	8.0	8.0	
Incr Delay (d2), s/veh	1.2	0.0	0.0	0.1	0.1	0.0	0.8	0.5	0.4	0.0	0.5	0.5	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/ln3.3	0.0	0.0	0.3	0.6	0.0	1.2	2.6	2.7	0.1	2.6	2.7	
Unsig. Movement Delay	, s/veh												
LnGrp Delay(d),s/veh	18.0	0.0	0.0	13.9	13.9	13.4	15.3	8.4	8.4	11.3	8.5	8.5	
LnGrp LOS	В	Α	Α	В	В	В	В	Α	Α	В	Α	Α	
Approach Vol, veh/h		331			114			1123			1003		
Approach Delay, s/veh		18.0			13.9			9.2			8.5		
Approach LOS		В			В			Α			Α		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)	, S	19.4		32.0		19.4		32.0					
Change Period (Y+Rc),		5.0		5.0		5.0		5.0					
Max Green Setting (Gm		27.0		32.0		27.0		32.0					
Max Q Clear Time (g_c-		3.5		11.9		11.9		21.7					
Green Ext Time (p_c), s		0.5		6.5		1.8		5.3					
Intersection Summary													
HCM 6th Ctrl Delay			10.3										
HCM 6th LOS			В										
110111 0111 200													

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDK				אמט
Lane Configurations	21	100	ሻ	^	†	20
Traffic Vol, veh/h	21	100	58	1052	1004	20
Future Vol, veh/h	21	100	58	1052	1004	20
Conflicting Peds, #/hr	0	0	3	0	0	3
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	105	61	1107	1057	21
Major/Minor N	Minor2	N	Major1	N	/lajor2	
Conflicting Flow All	1747	542	1081	0	- -	0
Stage 1	1071	-	-	-	_	-
Stage 2	676	_	_	_	_	_
Critical Hdwy	6.84	6.94	4.14		_	
Critical Hdwy Stg 1	5.84	0.34	4.14	_	_	_
Critical Hdwy Stg 2	5.84	_	-	-		_
, ,	3.52	3.32	2.22	•	-	-
Follow-up Hdwy			641	-		-
Pot Cap-1 Maneuver	77	485	041	-	-	-
Stage 1	290	-	-	-	-	-
Stage 2	467	-	-	-	-	
Platoon blocked, %	.00	404	000	-	-	-
Mov Cap-1 Maneuver	69	484	639	-	-	-
Mov Cap-2 Maneuver	69	-	-	-	-	-
Stage 1	262	-	-	-	-	-
Stage 2	466	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	36.6		0.6		0	
HCM LOS	30.0 E		0.0		U	
I ICIVI LOS						
				EDL 4	SBT	SBR
Minor Lane/Major Mvm	ıt	NBL	NBTI	ERFUI	001	
	ıt	NBL 639	NBT I		-	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	it		-			-
Capacity (veh/h) HCM Lane V/C Ratio		639	-	237 0.537	-	-
Capacity (veh/h)		639 0.096	-	237 0.537	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		639 0.096 11.2	- - -	237 0.537 36.6	- - -	- - -

	•	•	†	/	>	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		† ‡	7,12,17	*	^		
Traffic Volume (veh/h)	102	60	1034	55	44	1090		
Future Volume (veh/h)	102	60	1034	55	44	1090		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	0.99	•	0.99	1.00	· ·		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	No	1.00	1.00	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	107	34	1088	54	46	1147		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	152	48	2074	103	398	2140		
Arrive On Green	0.12	0.12	0.60	0.60	0.60	0.60		
Sat Flow, veh/h	1302	414	3538	171	492	3647		
Grp Volume(v), veh/h	142	0	561	581	46	1147		
Grp Sat Flow(s),veh/h/ln	1728	0	1777	1838	492	1777		
Q Serve(g_s), s	3.0	0.0	6.9	6.9	2.2	7.1		
Cycle Q Clear(g_c), s	3.0	0.0	6.9	6.9	9.1	7.1		
Prop In Lane	0.75	0.24	4070	0.09	1.00	0440		
Lane Grp Cap(c), veh/h	202	0	1070	1107	398	2140		
V/C Ratio(X)	0.70	0.00	0.52	0.52	0.12	0.54		
Avail Cap(c_a), veh/h	1386	0	2353	2434	754	4705		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	15.9	0.0	4.3	4.3	7.0	4.4		
Incr Delay (d2), s/veh	4.4	0.0	0.4	0.4	0.1	0.2		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.3	0.0	1.0	1.0	0.2	0.9		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	20.3	0.0	4.7	4.7	7.1	4.6		
LnGrp LOS	С	Α	Α	Α	Α	Α		
Approach Vol, veh/h	142		1142			1193		
Approach Delay, s/veh	20.3		4.7			4.7		
Approach LOS	С		Α			Α		
Timer - Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				28.0		9.4	28.0	
Change Period (Y+Rc), s				5.5		5.0	5.5	
Max Green Setting (Gmax), s				49.5		30.0	49.5	
Max Q Clear Time (g_c+l1), s				11.1		5.0	8.9	
Green Ext Time (p_c), s				11.4		0.4	9.4	
Intersection Summary								
HCM 6th Ctrl Delay			5.6					
HCM 6th LOS			5.6 A					
Notes								

User approved volume balancing among the lanes for turning movement.

•	-	\rightarrow	•	←	•	•	†	/	-	↓	1	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations 3	4111		ሻሻ	1111	7	ሻ	^	7	ሻሻ	∱ 1>		
Traffic Volume (veh/h) 88	919	130	255	1612	315	125	662	276	281	741	146	
Future Volume (veh/h) 88	919	130	255	1612	315	125	662	276	281	741	146	
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.00		0.99	1.00		1.00	1.00		0.98	1.00		0.98	
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No			No			No		
Adj Sat Flow, veh/h/ln 1870	1870	1870	1870	1870	1870	1870	1870	1945	1870	1870	1870	
Adj Flow Rate, veh/h 93	967	117	268	1697	139	132	697	165	296	780	139	
Peak Hour Factor 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, % 2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h 220	2053	245	302	2408	592	158	1035	472	331	897	160	
Arrive On Green 0.06	0.35	0.35	0.09	0.37	0.37	0.09	0.29	0.29	0.10	0.30	0.30	
Sat Flow, veh/h 3456	5858	700	3456	6434	1583	1781	3554	1621	3456	3005	535	
Grp Volume(v), veh/h 93	795	289	268	1697	139	132	697	165	296	461	458	
Grp Sat Flow(s), veh/h/ln1728	1609	1732	1728	1609	1583	1781	1777	1621	1728	1777	1764	
Q Serve(g_s), s 3.1	15.4	15.6	9.2	26.9	7.2	8.8	20.8	9.6	10.2	29.5	29.5	
Cycle Q Clear(g_c), s 3.1	15.4	15.6	9.2	26.9	7.2	8.8	20.8	9.6	10.2	29.5	29.5	
Prop In Lane 1.00		0.40	1.00		1.00	1.00		1.00	1.00		0.30	
Lane Grp Cap(c), veh/h 220	1691	607	302	2408	592	158	1035	472	331	530	526	
V/C Ratio(X) 0.42	0.47	0.48	0.89	0.70	0.23	0.84	0.67	0.35	0.89	0.87	0.87	
Avail Cap(c_a), veh/h 302	1691	607	302	2408	592	171	1140	520	331	570	566	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.79	0.79	0.79	
Uniform Delay (d), s/veh 54.1	30.3	30.4	54.2	31.9	25.8	53.8	37.5	33.6	53.6	39.9	39.9	
Incr Delay (d2), s/veh 0.5	0.9	2.7	24.7	1.8	0.9	25.3	1.8	0.8	20.4	11.4	11.5	
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/lrll.3	5.9	6.7	4.9	10.3	2.9	5.0	9.2	3.9	5.3	14.3	14.2	
Unsig. Movement Delay, s/ve												
LnGrp Delay(d),s/veh 54.5	31.2	33.1	78.9	33.7	26.7	79.1	39.3	34.3	74.0	51.3	51.4	
LnGrp LOS D	С	<u>C</u>	<u>E</u>	С	С	<u>E</u>	D	С	<u>E</u>	D	D	
Approach Vol, veh/h	1177			2104			994			1215		
Approach Delay, s/veh	33.5			39.0			43.8			56.8		
Approach LOS	С			D			D			Е		
Timer - Assigned Phs 1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$6.0	47.6	15.1	41.3	13.1	50.4	16.0	40.4					
Change Period (Y+Rc), s 5.5	5.5	4.5	5.5	5.5	5.5	4.5	5.5					
Max Green Setting (Gmatkl), 5	38.5	11.5	38.5	10.5	38.5	11.5	38.5					
Max Q Clear Time (g_c+lff),2		10.8	31.5	5.1	28.9	12.2	22.8					
Green Ext Time (p_c), s 0.0	10.5	0.0	4.3	0.1	8.4	0.0	7.1					
Intersection Summary												
HCM 6th Ctrl Delay		42.6										
HCM 6th LOS		D										
		_										

	•	•	†	/	/	ļ				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	7	7	ተተ _ጉ		ሻ	^				
Traffic Volume (veh/h)	137	120	1156	177	102	779				
Future Volume (veh/h)	137	120	1156	177	102	779				
Initial Q (Qb), veh	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	No		No			No				
Adj Sat Flow, veh/h/ln	1885	1961	1885	1885	1885	1885				
Adj Flow Rate, veh/h	144	11	1217	170	107	820				
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95				
Percent Heavy Veh, %	1	1	1	1	1	1				
Cap, veh/h	180	166	3284	459	384	2865				
Arrive On Green	0.10	0.10	0.72	0.72	0.04	0.80				
Sat Flow, veh/h	1795	1662	4718	635	1795	3676				
Grp Volume(v), veh/h	144	11	918	469	107	820				
Grp Sat Flow(s),veh/h/ln	1795	1662	1716	1752	1795	1791				
Q Serve(g_s), s	7.8	0.6	10.2	10.2	1.4	5.9				
Cycle Q Clear(g_c), s	7.8	0.6	10.2	10.2	1.4	5.9				
Prop In Lane	1.00	1.00		0.36	1.00					
Lane Grp Cap(c), veh/h	180	166	2477	1265	384	2865				
V/C Ratio(X)	0.80	0.07	0.37	0.37	0.28	0.29				
Avail Cap(c_a), veh/h	377	349	2477	1265	513	2865				
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter(I)	1.00	1.00	0.53	0.53	1.00	1.00				
Uniform Delay (d), s/veh	44.0	40.8	5.3	5.3	3.6	2.6				
Incr Delay (d2), s/veh	8.1	0.2	0.2	0.4	0.1	0.3				
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/ln	3.9	0.3	3.0	3.1	0.4	1.4				
Unsig. Movement Delay, s/veh										
LnGrp Delay(d),s/veh	52.1	40.9	5.5	5.7	3.7	2.8				
LnGrp LOS	D	D	Α	Α	Α	Α				
Approach Vol, veh/h	155		1387			927				
Approach Delay, s/veh	51.3		5.6			2.9				
Approach LOS	D		Α			Α				
Timer - Assigned Phs		2		4			7	8		
Phs Duration (G+Y+Rc), s		15.0		85.0			7.8	77.2		
Change Period (Y+Rc), s		5.0		5.0			4.0	5.0		
Max Green Setting (Gmax), s		21.0		69.0			11.0	54.0		
Max Q Clear Time (g_c+l1), s		9.8		7.9			3.4	12.2		
Green Ext Time (p_c), s		0.3		10.2			0.0	7.6		
Intersection Summary										
HCM 6th Ctrl Delay			7.5							
HCM 6th LOS			A							

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR Lane Configurations Traffic Volume (veh/h) 144 110 148 31 55 30 112 1166 55 37 798 92 Future Volume (veh/h) 144 110 148 31 55 30 112 1166 55 37 798 92 Initial Q (Qb), veh 0 <t< th=""></t<>
Lane Configurations Traffic Volume (veh/h) 144 110 148 31 55 30 112 1166 55 37 798 92 Future Volume (veh/h) 144 110 148 31 55 30 112 1166 55 37 798 92 Initial Q (Qb), veh 0
Traffic Volume (veh/h) 144 110 148 31 55 30 112 1166 55 37 798 92 Future Volume (veh/h) 144 110 148 31 55 30 112 1166 55 37 798 92 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 0.97 1.00 0.99
Future Volume (veh/h) 144 110 148 31 55 30 112 1166 55 37 798 92 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 0.97 1.00 0.99
Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 0.97 1.00 0.99
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 0.97 1.00 0.99
Work Zone On Approach No No No No
Adj Sat Flow, veh/h/ln 1885 1885 1885 1885 1885 1885 1885 188
Adj Flow Rate, veh/h 152 116 121 33 58 10 118 1227 53 39 840 84
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Percent Heavy Veh, % 1 1 1 1 1 1 1 1 1 1 1 1
Cap, veh/h 257 167 149 432 572 503 342 1771 76 241 1666 167
Arrive On Green 0.30 0.30 0.30 0.30 0.30 0.51 0.51 0.51 0.51 0.51
Sat Flow, veh/h 536 552 491 1151 1885 1658 609 3493 151 435 3285 328
Grp Volume(v), veh/h 389 0 0 33 58 10 118 629 651 39 458 466
Grp Sat Flow(s),veh/h/ln1578 0 0 1151 1885 1658 609 1791 1853 435 1791 1823
Q Serve(g_s), s 10.1 0.0 0.0 0.0 1.2 0.2 8.4 14.1 14.1 3.9 8.9 8.9
Cycle Q Clear(g_c), s 11.9 0.0 0.0 1.4 1.2 0.2 17.3 14.1 14.1 18.1 8.9 8.9
Prop In Lane 0.39 0.31 1.00 1.00 1.00 0.08 1.00 0.18
Lane Grp Cap(c), veh/h 574 0 0 432 572 503 342 908 939 241 908 924
V/C Ratio(X) 0.68 0.00 0.00 0.08 0.10 0.02 0.34 0.69 0.69 0.16 0.50 0.50
Avail Cap(c_a), veh/h 897 0 0 672 965 849 403 1086 1124 284 1086 1105
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Upstream Filter(I) 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0
Uniform Delay (d), s/veh 16.8 0.0 0.0 13.3 13.2 12.9 14.4 9.9 9.9 16.8 8.6 8.6
Incr Delay (d2), s/veh 1.4 0.0 0.0 0.1 0.1 0.0 0.6 1.5 1.5 0.3 0.4 0.4
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
%ile BackOfQ(50%),veh/ln4.0 0.0 0.0 0.3 0.5 0.1 1.0 4.4 4.5 0.4 2.7 2.7
Unsig. Movement Delay, s/veh
LnGrp Delay(d),s/veh 18.3 0.0 0.0 13.4 13.3 12.9 15.0 11.4 11.4 17.1 9.0 9.0
LnGrp LOS B A A B B B B B A A
Approach Vol, veh/h 389 101 1398 963
Approach Delay, s/veh 18.3 13.3 11.7 9.4
Approach LOS B B B A
Timer - Assigned Phs 2 4 6 8
Phs Duration (G+Y+Rc), s 21.0 31.8 21.0 31.8
Change Period (Y+Rc), s 5.0 5.0 5.0 5.0
Max Green Setting (Gmax), s 27.0 32.0 27.0 32.0
Max Q Clear Time (g_c+l1), s 3.4 20.1 13.9 19.3
Green Ext Time (p_c), s 0.4 4.9 2.0 7.4
Intersection Summary
HCM 6th Ctrl Delay 11.8
HCM 6th LOS B

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIX	NDL			אומט
		20		^	†	11
Traffic Vol, veh/h	17	39	93	1233	886	41
Future Vol, veh/h	17	39	93	1233	886	41
Conflicting Peds, #/hr	0	0	_ 3	0	_ 0	3
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1
Mvmt Flow	18	41	98	1298	933	43
Maiay/Minay	Ain c = O		Anic of		1-i0	
	Minor2		Major1		/lajor2	
Conflicting Flow All	1803	491	979	0	-	0
Stage 1	958	-	-	-	-	-
Stage 2	845	-	-	-	-	-
Critical Hdwy	6.82	6.92	4.12	-	-	-
Critical Hdwy Stg 1	5.82	-	-	-	-	-
Critical Hdwy Stg 2	5.82	-	-	-	-	-
Follow-up Hdwy	3.51	3.31	2.21	-	-	-
Pot Cap-1 Maneuver	72	526	707	-	-	-
Stage 1	335	-	-	-	-	-
Stage 2	384	-	-	-	-	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	62	524	705	_	-	-
Mov Cap-2 Maneuver	62	-	-	_	_	_
Stage 1	287	_	_	_	_	_
Stage 2	383	_	_	_	_	
Slaye Z	505	-	_	<u>-</u>	<u>-</u>	-
			NB		SB	
Approach	EB		110			
Approach HCM Control Delay, s	39.7		0.8		0	
					0	
HCM Control Delay, s	39.7				0	
HCM Control Delay, s HCM LOS	39.7 E	MDI	0.8	CDI 4		CDD
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	39.7 E	NBL	0.8	EBLn1	0 SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	39.7 E	705	0.8 NBT	161		SBR -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	39.7 E	705 0.139	0.8 NBT	161 0.366		SBR - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	39.7 E	705 0.139 10.9	0.8 NBT	161 0.366 39.7	SBT -	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	39.7 E	705 0.139	0.8 NBT -	161 0.366	SBT - -	-

	•	•	†	~	>	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		^		*	^		_
Traffic Volume (veh/h)	71	59	1387	109	66	861		
Future Volume (veh/h)	71	59	1387	109	66	861		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	0.99	•	0.99	1.00	J		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	No	1.00	1.00	No		
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885		
Adj Flow Rate, veh/h	75	36	1460	111	69	906		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Percent Heavy Veh, %	1	1	1	1	1	1		
Cap, veh/h	109	53	2244	170	299	2383		
Sap, venim Arrive On Green	0.09	0.09	0.67	0.67	0.67	0.67		
	1152		3467	255	329	3676		
Sat Flow, veh/h		553						
Grp Volume(v), veh/h	112	0	772	799	69	906		
Grp Sat Flow(s),veh/h/ln	1721	0	1791	1837	329	1791		
Q Serve(g_s), s	2.8	0.0	11.1	11.3	6.9	5.0		
Cycle Q Clear(g_c), s	2.8	0.0	11.1	11.3	18.2	5.0		
Prop In Lane	0.67	0.32		0.14	1.00			
_ane Grp Cap(c), veh/h	163	0	1192	1223	299	2383		
//C Ratio(X)	0.69	0.00	0.65	0.65	0.23	0.38		
Avail Cap(c_a), veh/h	1178	0	2023	2076	451	4046		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00		
Jniform Delay (d), s/veh	19.2	0.0	4.3	4.3	9.7	3.3		
ncr Delay (d2), s/veh	5.0	0.0	0.6	0.6	0.4	0.1		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.2	0.0	1.5	1.6	0.4	0.6		
Jnsig. Movement Delay, s/vel	ı							
_nGrp Delay(d),s/veh	24.2	0.0	4.9	4.9	10.1	3.4		
_nGrp LOS	С	Α	Α	Α	В	Α		
Approach Vol, veh/h	112		1571			975		
Approach Delay, s/veh	24.2		4.9			3.9		
Approach LOS	C		A			A		
Fimer - Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				34.7		9.2	34.7	
Change Period (Y+Rc), s				5.5		5.0	5.5	
Max Green Setting (Gmax), s				49.5		30.0	49.5	
Max Q Clear Time (g_c+l1), s				20.2		4.8	13.3	
Green Ext Time (p_c), s				9.0		0.3	15.4	
ntersection Summary								
HCM 6th Ctrl Delay			5.3					
HCM 6th LOS			Α					
Notes								

User approved volume balancing among the lanes for turning movement.

FP_PM 2:06 pm 04/06/2023 Synchro 11 Report

ر	٠	→	•	•	←	•	•	†	/	/	↓	✓	
Movement EE	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	ነኘ	4111		ሻሻ	1111	7	ች	^	7	ሻሻ	ħβ		
	35	1524	156	164	1300	413	148	779	301	255	496	142	
Future Volume (veh/h) 23	35	1524	156	164	1300	413	148	779	301	255	496	142	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.0	00		0.99	1.00		0.98	1.00		0.96	1.00		1.00	
Parking Bus, Adj 1.0	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No			No			No			No		
Adj Sat Flow, veh/h/ln 188	85	1885	1885	1885	1885	1885	1885	1885	1961	1885	1885	1885	
Adj Flow Rate, veh/h 24	47	1604	150	173	1368	277	156	820	199	268	522	126	
Peak Hour Factor 0.9	95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1	
	76	2284	214	231	2358	568	183	1056	471	305	802	193	
Arrive On Green 0.0		0.38	0.38	0.07	0.36	0.36	0.10	0.29	0.29	0.09	0.28	0.28	
Sat Flow, veh/h 348	83	6070	567	3483	6485	1561	1795	3582	1599	3483	2862	688	
	47	1285	469	173	1368	277	156	820	199	268	326	322	
Grp Sat Flow(s), veh/h/ln174	42	1621	1774	1742	1621	1561	1795	1791	1599	1742	1791	1759	
\ 0 _ /·	3.4	26.9	26.9	5.9	20.4	16.5	10.3	25.1	12.0	9.1	19.2	19.4	
Cycle Q Clear(g_c), s 8	3.4	26.9	26.9	5.9	20.4	16.5	10.3	25.1	12.0	9.1	19.2	19.4	
	00		0.32	1.00		1.00	1.00		1.00	1.00		0.39	
Lane Grp Cap(c), veh/h 27	76	1830	667	231	2358	568	183	1056	471	305	502	493	
V/C Ratio(X) 0.9		0.70	0.70	0.75	0.58	0.49	0.85	0.78	0.42	0.88	0.65	0.65	
Avail Cap(c_a), veh/h 27	76	1830	667	276	2358	568	232	1149	513	305	502	493	
	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.0	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.92	0.92	
Uniform Delay (d), s/veh 54		31.7	31.7	55.0	30.8	29.5	53.0	38.7	34.1	54.1	38.0	38.1	
3 (),	3.3	2.3	6.1	6.8	1.0	3.0	17.7	3.7	1.0	21.9	3.3	3.5	
Initial Q Delay(d3),s/veh 0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln4		10.4	12.1	2.7	7.8	6.6	5.5	11.4	4.8	4.9	8.8	8.7	
Unsig. Movement Delay, s/	/veh												
LnGrp Delay(d),s/veh 83		34.0	37.8	61.8	31.8	32.5	70.7	42.4	35.1	76.1	41.3	41.6	
LnGrp LOS	F	С	D	<u>E</u>	С	С	<u>E</u>	D	D	<u>E</u>	D	D	
Approach Vol, veh/h		2001			1818			1175			916		
Approach Delay, s/veh		41.0			34.8			44.9			51.6		
Approach LOS		D			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$3	3.5	50.7	16.7	39.1	15.0	49.1	15.0	40.9					
Change Period (Y+Rc), s 5		5.5	4.5	5.5	5.5	5.5	4.5	5.5					
Max Green Setting (Gmax9)		40.5	15.5	33.5	9.5	40.5	10.5	38.5					
Max Q Clear Time (g_c+l17)		28.9	12.3	21.4	10.4	22.4	11.1	27.1					
Green Ext Time (p_c), s 0		9.7	0.1	4.7	0.0	13.4	0.0	6.7					
Intersection Summary													
HCM 6th Ctrl Delay			41.5										
HCM 6th LOS			D										

Appendix E: Traffic Signal Warrant Analysis Worksheets

Page 844

California MUTCD 2014 Edition (FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 1 of 5)

									C	COUNT	DAT	E	10 N	1ay 2	022		
														ATE.			_
D	IST	505	RTE		PM				C	CHK _			D	ATE.			-
Ma	jor St: _	Normand	die	Av				_	Critica	al Appro	oach :	Spee	d	35		mpl	n
	or St: _	169th St						_				9.0	ed	2!	5	mpl	
		limit or critic										Ol	RUR	AL (R)		
	In buil	t up area of i	sola	ated	commur	nity of <	10,000 բ	opulat	ion			X	URB	AN (U)		_
		NT 1 - Eig on A or C							and	B mu			SFIED itisfied	17/10	s 🗆	NO [K
Со	nditio	n A - Mini	imı	um \	Vehicle	• Volur	ne			100	% S	ATI	SFIED	ΥE	s 🗆	NO [X
					IUM RE					80	% S	ATI	SFIED	YE	S□	NO [K
			1	U	R	U	R				1						
		PROACH ANES		•	1	2 or	More	7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2/2/		1/2/		No.	No /	H	ou
		Approaches jor Street		00) 100)	350 (280)	600 (480)	420 (336)	1,513	1,881	1,522	1,586	5 1,5	71 1,95	2 2,0	78 2,0	78	
	Highe Mir	st Approach or Street		150 120)	105 (84)	200 (160)	140 (112)	62	75	43	42	4	3 44	50) 44	4	
Co	nditio	n B - Inte	rru	ıptic	on of C	ontinu	ious Ti	raffic		100	% S	ATI:	SFIED	ΥE	s□	NO [χĪ
			N	MNIN	MUM RE	QUIREN	MENTS	1					SFIED	YE	s 🗆	NO [
				U	R	U	R	1									
		PROACH ANES			1	2 or	More	7	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1/2		Na		My /	/N/	H	ou
	Both / Ma	Approaches jor Street		750 600)	525 (420)	900 (720)	630 (504)	1,513	1,881	1,522	1,58	6 1,5	71 1,95	2 2,0	78 2,0	78	
	Highe Mir	st Approach or Street		75 60)	53 (42)	100 (80)	70 (56)	62	75	43	42	4	8 44	5	0 4	4	
Co	mbin	ation of C	on	ditio	ons A 8	ßВ					s	ATI	SFIED	ΥE	s 🗆	NO [X
	REC	UIREMENT				3	CONDIT	ION				✓	FU	ILFIL	LED	T	
	A. MINIMUM VEH				ICULAR	CULAR VOLUME											
	TWO CONDITIONS SATISFIED 80% AND, B. INTER				RUPTIO	N OF CO	INITING	JOUS	TRAFI	FIC		Yes		No 🛚			
	CAUS	AN ADEQUA E LESS DE DLVE THE T	LAY	ANI	O INCOM	IVENIE							Yes		No 🛚		

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

WARRANT 2 - Four Hour Vehicular Volume	SATISFIED*	YES	NO X
Record hourly vehicular volumes for any four hours of an average day.			
APPROACH LANES One More	Hour		
Both Approaches - Major Street X 1,513 1,881 1,57	1 2,078		
Higher Approach - Minor Street X 62 75 48	50		
*All plotted points fall above the applicable curve in Figure 4C-1. (URBAI	N AREAS)	Yes 🗆	No X
OR, All plotted points fall above the applicable curve in Figure 4C-2. (RU	RAL AREAS)	Yes 🛚	No 🗆
		<u>'</u>	
	SATISFIED	YES 🗆	NO 🛚
PART A (All parts 1, 2, and 3 below must be satisfied for the same	SATISFIED	YES 🗆	NO 🗵
one hour, for any four consecutive 15-minute periods)			
 The total delay experienced by traffic on one minor street approach (on controlled by a STOP sign equals or exceeds four vehicle-hours for a o approach, or five vehicle-hours for a two-lane approach; <u>AND</u> 		Yes 🗆	No 🗆
2. The volume on the same minor See Attachment A 1/19) eq. 100 vph for one moving lane of	uals or exceeds AND	Yes 🗆	No 🗆
3. The total entering volume serviced during the hour equals or exceeds 8 for intersections with four or more approaches or 650 vph for intersection three approaches.		Yes 🗆	No 🗆
PART B	SATISFIED	YES 🗆	NO 🗵
2 or Hour			
Both Approaches - Major Street			
Higher Approach - Minor Street See Attachment A			
The plotted point falls above the applicable curve in Figure 4C-3. (URBA	N AREAS)	Yes 🗌	No 🗆
OR, The plotted point falls above the applicable curve in Figure 4C-4. (R	URAL AREAS)	Yes 🗆	No 🗆

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Warrant 3 is projected to be met in the Opening Year Plus Project AM scenario

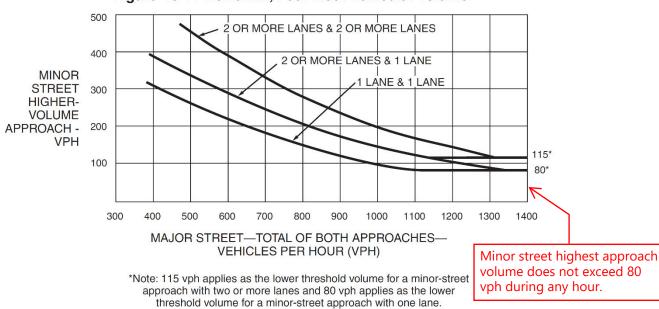


Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

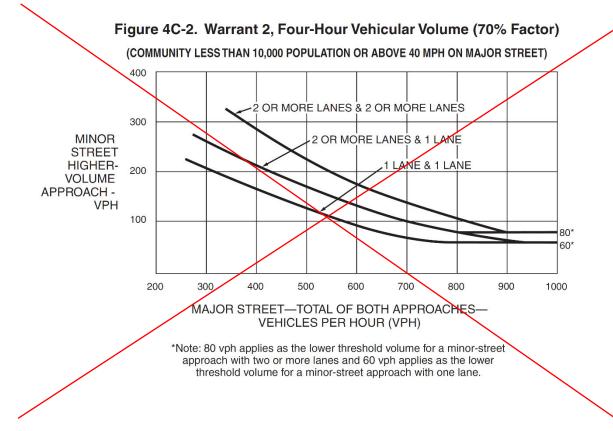


Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 3 of 5)

		RRANT 4 - Pedestrian Volume ts 1 and 2 Must Be Satisfied)							YES	NO []
	Part 1 (Parts A or B mus Hours>	t be satisfied	1) /								
Α.	Vehicles per hour for any 4 hours								or Figure YES □		
	Pedestrians per hour fo any 4 hours	r									
В.	Hours> Vehicles per hour for any 1 hour Pedestrians per hour fo	intersed	estriar	n cross	ing v	olumes	per	S. C-7	or Figure YES □		
	any 1 hour	<u> </u>								- 1931 1-	
	Part 2		est vacat capacacacies	and the contract of the contra		S (Standard) The Standard	SATIS	FIED	YES 🗆	NO [_
	AND, The distance to the than 300 ft	nearest tram	c signal a	along the	majors	street is gr	eater		Yes 🗆	No []
	OR, The proposed traffic	signal will not	restrict pr	rogressive	e traffic	flow along	the majo	r street.	Yes 🗆	No [
VA Pa	ARRANT 5 - School C arts A and B Must Be	rossing Satisfied)					SATIS	FIED	YES 🗆	NO []
	art A ap/Minutes and # of Child	ren			Ho	our	SATIS	FIED	YES 🗆	NO []
	Gaps Minutes C	hildren Using C	rossing								
	1000 000 10 10 00 00 00 1000 00 1000 00	of Adequate G	iaps		G	aps < Mi		L	YES	NO [_
	School Age Pedestrians	Warrant					0 110	D/hr	YES 🗆	NO [<u> </u>
	AND, Consideration has	school in and No							Yes 🗆	No [
Pá	art B						SATIS	FIED	YES 🗆	NO [
	The distance to the near	est traffic sign	al along	the maio	r street	is greater			Vac 🗆	No [
	than 300 ft					•			Yes 🗆	NO L	=
	than 300 ft OR, The proposed signal						ffic.		Yes	No E	_

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 4 of 5)

WARRANT 6 - Coordina All Parts Must Be Satis	ted Signal System fied)	SATISFIE	D '	YES 🗆	NO [
MINIMUM REQUIREMENTS	DISTANCE TO NEAF	REST SIGNAL			
≥ 1000 ft	Marrant was not norform	ad due to	ft	Yes 🗌	No
On a one-way street or a traffic control signals are vehicular platooning. OR, On a two-way street, au	Warrant was not performed ceptable operating conditions and the local per LC proposed and adjacent traffic contribution.	tions along se of		- Yes□	No□
VARRANT 7 - Crash Ex All Parts Must Be Satis	perience Warrant fied)	SATISFIE	D '	YES 🗆	NO X
Adequate trial of alternatives reduce the crash frequency.	with satisfactory observance and e	nforcement has failed	to	Yes 🗌	No□
REQUIREMENTS	Number of crashes reported within susceptible to correction by a traffic or damage exceeding the requirem	signal, and involving	njury ash.	Yes 🗆	NoX
5 OR MORE					
REQUIREMENTS	CONDITIONS			4	
	Warrant 1, Condition A - Minimum Vehicular Volume				
ONE CONDITION SATISFIED 80%	OR, Warrant 1, Condition B - Interruption of Continuous Traffic	1 2		Yes 🗌	NoX
5/110/12b 00%	OR, Warrant 4, Pedestrian Volum Ped Vol ≥ 80% of Figure 4C-5 thr	ne Condition rough Figure 4C-8		1	
1000 Veh/Hr Yes	fied)	e Att. B Veh/Hr that meet one or more e weekday.	✓	FULFI	LLED
	CS OF MAJOR ROUTES	MAJOR MAJ		 	
	cipal Network for Through Traffic	ROUTE A ROUT	EΒ	169)th
Rural or	Of, Entering, or Traversing a City	 	 	Street a ma	t not ajor
	or Route Characteristics Met. Both S	L L L L L L L L L L L L L L L L L L L		」 Yes□	NoX

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

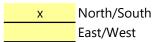
Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 5 of 5)

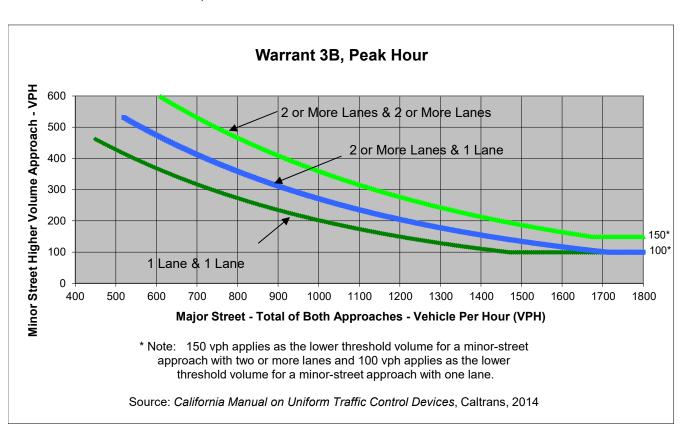
WARRANT 9 - Inters (Both Parts A and B	ection Near a Grade Crossing Must Be Satisfied)	SATISFIED	YES NO [
PART A							
A grade crossing exists of center of the track nearer line on the approach. Tr	Yes ☐ No ☐						
PART B							
	eet approach lane at the track crossing - Durin g which rail traffic uses the crossing, the plotted pigure 4C-9.	-					
Major Street - Total of both approaches: VPH Minor Street - Crosses the track (one direction only, approaching the intersection): VPH X AF (Use Tables 4C-2, 3, & 4 below to calculate AF) = VPH							
OR, There are two or more minor street approach lanes at the track crossing - During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-10.							
Major Street - Total of both approaches : VPH Minor Street - Crosses the track (one direction only, approaching the intersection): VPH X AF (Use Tables 4C-2, 3, & 4 below to calcualte AF) = VPH							
The minor street approach as described in Section 40	Warrant not performed. Warrar pertains to grade crossings on m		ors (AF)				
1- Number of Rail Traffic p streets. Railroad crosses the major t factor from							
2- Percentage of High-Occ street near Normandie/169th. t factor from table 4C-3							
3- Percentage of Tractor-Trailer Trucks on Minor Street Approach Adjustment factor from table 4C-4							
NOTE: If no data is availa	le or known, then use AF = 1 (no adjustment)						

Attachment A

FEHR PEERS

Major Street Minor Street Normandie Avenue
169th Street


Project Scenario 16911 Normandie Avenue Project
Existing Conditions


Peak Hour AM (7:45 AM)

Turn Movement Volumes

	NB	SB	EB	WB
Approach Volume	979	1,018	84	
Total	979	1,018	84	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Normandie Avenue	169th Street	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,997	84	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

FEHR PEERS

Major Street Minor Street Normandie Avenue 169th Street

Project Scenario 16911 Normandie Avenue Project

Existing Conditions Peak Hour AM (7:45 AM)

Turn Movement Volumes

	NB	SB	EB	WB
Approach Volume	979	1,018	84	
Total	979	1.018	84	0

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

3

Worst Case Delay for Minor Street Stopped Delay (seconds per vehicle) Approach with Worst Case Delay

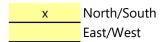
Total Vehicles on Approach

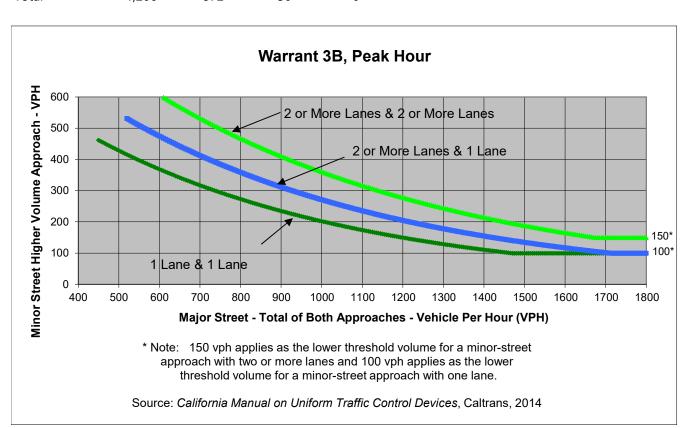
20.3 ЕВ 84

See Appendix D

Warrant 3A, Peak Hour							
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)				
Existing Conditions	0.5	84	2,081				
Limiting Value	4	100	650				
Condition Satisfied?	Not Met	Not Met	Met				
Warrant Met		NO					

FEHR PEERS


Major Street Minor Street Normandie Avenue 169th Street Project Scenario 16911 Normandie Avenue Project
Existing Conditions


Peak Hour PM (4 PM)

Turn Movement Volumes

	NB	SB	EB	WB
Approach Volume	1,206	872	50	
Total	1,206	872	50	0

Major Street Direction

	Major Street	Minor Street	Warrant Met	
	Normandie Avenue	169th Street	vvairant iviet	
Number of Approach Lanes	2	1	- <u>NO</u>	
Traffic Volume (VPH) *	2,078	50		

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

FEHR PEERS

Major Street Minor Street Normandie Avenue
169th Street

Project Scenario 16911 Normandie Avenue Project
Existing Conditions

Peak Hour PM (4 PM)

Turn Movement Volumes

	NB	SB	EB	WB
Approach Volume	1,206	872	50	
Total	1,206	872	50	0

Major Street Direction

x North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches

1 3

Worst Case Delay for Minor Street

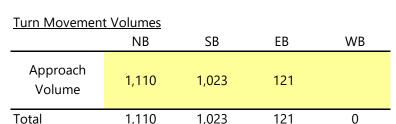
Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

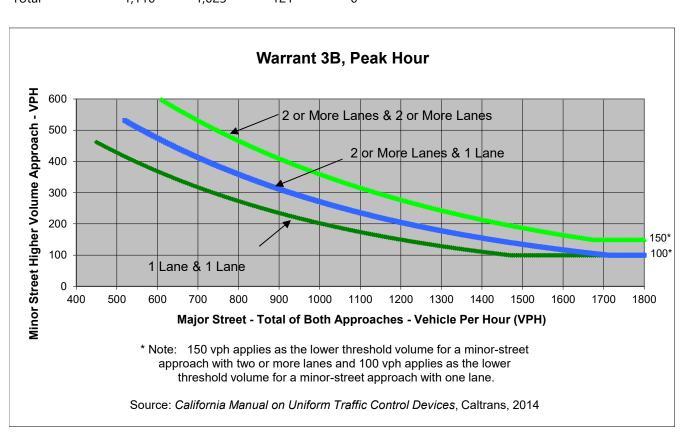
21.5	
EB	
50	

See Appendix D

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
Existing Conditions	0.3	50	2,128	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met	<u>NO</u>			

Attachment B


FEHR PEERS


Major Street Minor Street Normandie Avenue 169th Street Project Scenario 16911 Normandie Avenue Project
Opening Year Plus Project

Peak Hour AM

Major Street Direction

X	North/South
	East/West

	Major Street	Minor Street	Warrant Met	
	Normandie Avenue	169th Street	warrant wet	
Number of Approach Lanes	2	1	<u>YES</u>	
Traffic Volume (VPH) *	2,133	121		

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.