Air Quality Assessment 1450 Artesia Boulevard SP Project City of Gardena, California

Prepared by:

Kimley-Horn and Associates, Inc.

660 South Figueroa Street, Suite 2050 Los Angeles, California 90017 Contact: Mr. Ryan Callahan 213.261.4040

TABLE OF CONTENTS

1	INTRODUCTION	
1.1	Project Location	1
1.2	Project Description	1
2	ENVIRONMENTAL SETTING	
2.1	Climate and Meteorology	6
2.2	Air Pollutants of Concern	7
2.3	Sensitive Receptors	10
3	REGULATORY SETTING	
3.1	Federal	11
3.2	State of California	11
3.3	Regional	13
3.4	Local	15
4	SIGNIFICANCE CRITERIA AND METHODOLOGY	
4.1	Air Quality Thresholds	17
4.2	Methodology	18
5	POTENTIAL IMPACTS	
5.1	Air Quality Analysis	20
6	REFERENCES	
	References	34
TABLES		
Table 1	Air Contaminants and Associated Public Health Concerns	
Table 2	Ambient Air Quality Data	9
Table 3	Sensitive Receptors	10
Table 4	State and Federal Ambient Air Quality Standards	12
Table 5	South Coast Air Basin Attainment Status	14
Table 6	South Coast Air Quality Management District Emissions Thresholds	17
Table 7	Local Significance Thresholds for Construction/Operations	18
Table 8	Construction-Related Emissions	22
Table 9	Operational Emissions	
Table 10	Equipment-Specific Grading Rates	28
Table 11	Localized Significance of Construction Emissions	28
Table 12	Localized Significance of Operational Emissions	29
EXHIBITS		
Exhibit 1	Regional Vicinity Map	3
Exhibit 2	Site Vicinity Map	4
Exhibit 3	Conceptual Site Plan	5

APPENDICES

Appendix A: Air Quality Modeling Data

LIST OF ABBREVIATED TERMS

AQMP air quality management plan

AB Assembly Bill

ADT average daily traffic

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resources Board

CAAQS California Ambient Air Quality Standards

CCAA California Clean Air Act

CalEEMod California Emissions Estimator Model
CEQA California Environmental Quality Act

CO carbon monoxide cy cubic yards

DPM diesel particulate matter

EPA Environmental Protection Agency

FCAA Federal Clean Air Act H_2S hydrogen sulfide

Pb lead

LST localized significance threshold µg/m³ micrograms per cubic meter mg/m³ milligrams per cubic meter

NAAQS National Ambient Air Quality Standards

NO₂ nitrogen dioxide NO_x nitrogen oxide

O₃ ozone

PM₁₀ particulate matter less than 10 microns in diameter PM_{2.5} particulate matter less than 2.5 microns in diameter

ppm parts per million
ROG reactive organic gases

RTP/SCS Regional Transportation Plan/Sustainable Communities Strategy

SB Senate Bill

SRA source receptor area SCAB South Coast Air Basin

South Coast

AQMD South Coast Air Quality Management District

SCAG Southern California Association of Governments

 $\begin{array}{ccc} sf & square foot \\ SO_{4-2} & sulfates \\ SO_2 & sulfur dioxide \end{array}$

TAC toxic air contaminant

C₂H₃Cl vinyl chloride

VOC volatile organic compound

1 INTRODUCTION

This report documents the results of an Air Quality Assessment completed for the 1450 Artesia Boulevard SP Project (Project). The purpose of this Air Quality Assessment is to evaluate the potential construction and operational emissions associated with the Project and determine the level of impact the Project would have on the environment.

1.1 Project Location

The proposed Project is located at 1450 Artesia Boulevard in the City of Gardena (City), California, just northeast of the City's border with the City of Torrance. The City is in southwest Los Angeles County and is bordered by the unincorporated West Athens community and the City of Hawthorne to the north, the cities of Los Angeles and Torrance to the south, the city of Los Angeles to the east, and the cities of Torrance, and Hawthorne and Los Angeles County to the west; see Exhibit 2: Site Vicinity Map.

The site is occupied by four buildings totaling approximately 12,064 gross square feet (GSF) (circa 1950) and associated surface parking lot. Preliminarily, it is assumed the existing buildings are occupied by two commercial uses (i.e., a U-Haul dealer and sandblasting service). For analysis purposes, it is assumed all onsite improvements would be removed and replaced with the proposed mixed-use development. Surrounding land uses include commercial to the north and west, residential and commercial to the south (potentially abandoned), and a vacant lot to the east. The Project site is designated Specific Plan and zoned 1450 Artesia Specific Plan. Surrounding areas to the south and west are also zoned Artesia Corridor Specific Plan. Regional access to the site is provided by State Route 91 (SR-91) freeway, located approximately 0.9 miles east of the Project site, the Interstate 110 (I-110) freeway, located approximately 0.9 miles east of the site, and the Interstate 405 (I-405) freeway located approximately 0.9 miles west of the site.

1.2 Project Description

The proposed Project is comprised of one industrial/commercial mixed-use development comprised of a 268,000 GSF building with associated surface parking (approximately 107 off-street parking spaces), along with landscape and circulation improvements, as shown in Exhibit 3: Conceptual Site Plan.

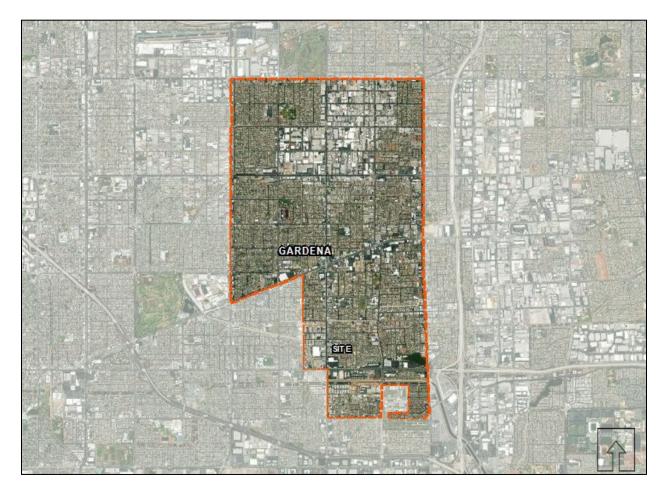
The proposed building would contain a self-storage use (four levels totaling 186,000 GSF), an industrial use (one level totaling 72,000 GSF plus ten loading docks), and an office/retail use (a mezzanine totaling 10,000 GSF). As noted in Chapter 5 of the 1450 Artesia Specific Plan, the Project permits warehouse, distribution, product delivery, wholesale, e-commerce, and storage uses (fulfillment-center uses which involve sorting are prohibited). For environmental analyses which depend on industrial land use type, this analysis is based on the light industrial land use, because although a warehouse use generates incrementally more truck traffic (approximately 6 additional heavy-duty truck trips per day), the warehouse use results in far fewer automobile trips. Thus, a light industrial land use would have the greatest overall trips and represents the "worst-case" for environmental analysis. See **Appendix L3: Revised Trip Generation Memo**.

Special Events

Additionally, the City of Gardena is proposing to host various special events on an approximately 36,000-square-foot portion (0.8 acre) of the industrial use's parking area (over approximately 63 parking spaces). The special events would be held approximately two to three times per month, including weekday evening events (after 6 PM) and weekend daytime events. During these events, the businesses would remain in operation, but drive aisles would be modified to protect the attendees.

The City anticipates hosting several types of medium-size special events, including the following:

- Food trucks Farmer's markets
- Car shows
- Live entertainment
- Food giveaways
- Mobile vaccination events


Site Access

Vehicular access to the site would be provided via one 35-foot driveway on Artesia Boulevard. *The Project driveway will only service the Project. Additionally, there is a separate 35-foot exit driveway adjacent to the entrance, divided by a 20-foot divide.*

Parking

Parking would be located along the northeastern portion of the site. The proposed Project would provide 124 automobile parking stalls and 10 dock doors. The dock doors will be oriented to face west. Daily activities within the Project site will include maneuvering forklifts, lift equipment, and large semi-trucks through and around the site and backing into the loading docks.

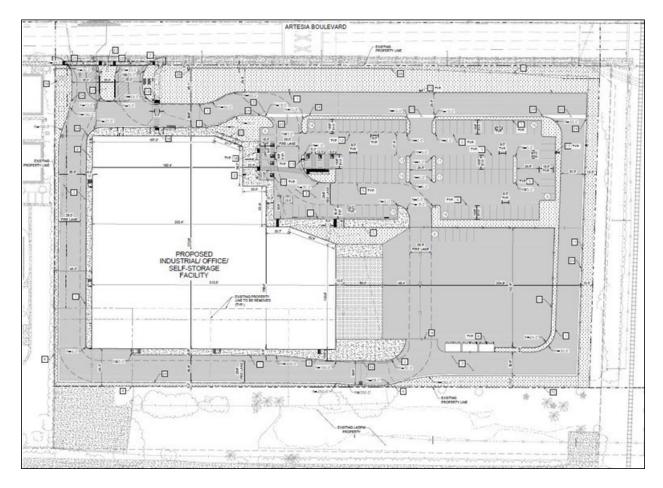

Exhibit 1: Regional Vicinity Map

Exhibit 2: Site Vicinity Map

Exhibit 3: Conceptual Site Plan

2 ENVIRONMENTAL SETTING

2.1 Climate and Meteorology

The California Air Resources Board (CARB) divides the State into 15 air basins that share similar meteorological and topographical features. The Project site is located within the South Coast Air Basin (SCAB), which includes the non-desert portions of Los Angeles, Riverside, and San Bernardino counties, as well as all of Orange County. The SCAB is on a coastal plain with connecting broad valleys and low hills, bounded by the Pacific Ocean on the southwest and high mountains forming the remainder of the perimeter. Air quality in this area is determined by such natural factors as topography, meteorology, and climate, in addition to the presence of existing air pollution sources and ambient conditions. These factors along with applicable regulations are discussed below.

The SCAB is part of a semi-permanent high-pressure zone in the eastern Pacific. As a result, the climate is mild and tempered by cool sea breezes. This usually mild weather pattern is occasionally interrupted by periods of extreme heat, winter storms, and Santa Ana winds. The annual average temperature throughout the 6,645-square-mile SCAB ranges from low 60 to high 80 degrees Fahrenheit with little variance. With more oceanic influence, coastal areas show less variability in annual minimum and maximum temperatures than inland areas.

Contrasting the steady pattern of temperature, rainfall is seasonally and annually highly variable. Almost all annual rainfall occurs between the months of November and April. Summer rainfall is reduced to widely scattered thundershowers near the coast, with slightly heavier activity in the east and over the mountains.

Although the SCAB has a semiarid climate, the air closer to the Earth's surface is typically moist because of the presence of a shallow marine layer. Except for occasional periods when dry, continental air is brought into the SCAB by offshore winds, the "ocean effect" is dominant. Periods of heavy fog are frequent and low clouds known as high fog are characteristic climatic features, especially along the coast. Annual average humidity is 70 percent at the coast and 57 percent in the eastern portions of the SCAB.

Wind patterns across the SCAB are characterized by westerly or southwesterly on-shore winds during the day and easterly or northeasterly breezes at night. Wind speed is typically higher during the dry summer months than during the rainy winter. Between periods of wind, air stagnation may occur in both the morning and evening hours. Air stagnation is one of the critical determinants of air quality conditions on any given day. During winter and fall, surface high-pressure systems over the SCAB, combined with other meteorological conditions, result in very strong, downslope Santa Ana winds. These winds normally continue for a few days before predominant meteorological conditions are reestablished.

The mountain ranges to the east affect the diffusion of pollutants by inhibiting the eastward transport of pollutants. Air quality in the SCAB generally ranges from fair to poor and is similar to air quality in most of coastal Southern California. The entire region experiences heavy concentrations of air pollutants during prolonged periods of stable atmospheric conditions.

In addition to the characteristic wind patterns that affect the rate and orientation of horizontal pollutant transport, two distinct types of temperature inversions control the vertical depth through which air pollutants are mixed. These inversions are the marine inversion and the radiation inversion. The height of

¹ South Coast Air Quality Management District, CEQA Air Quality Handbook, 1993.

the base of the inversion at any given time is called the "mixing height." The combination of winds and inversions is a critical determinant leading to highly degraded air quality for the SCAB in the summer and generally good air quality in the winter.

2.2 Air Pollutants of Concern

The air pollutants emitted into the ambient air by stationary and mobile sources are regulated by state and federal laws. These regulated air pollutants are known as "criteria air pollutants" and are categorized into primary and secondary pollutants.

Primary air pollutants are emitted directly from sources. Carbon monoxide (CO), reactive organic gases (ROG), nitrogen oxide (NO_X), sulfur dioxide (SO₂), coarse particulate matter (PM₁₀), fine particulate matter (PM_{2.5}), and lead are primary air pollutants. Of these, CO, NO_X, SO₂, PM₁₀, and PM_{2.5} are criteria pollutants. ROG and NO_X are criteria pollutant precursors and form secondary criteria pollutants through chemical and photochemical reactions in the atmosphere. For example, the criteria pollutant ozone (O₃) is formed by a chemical reaction between ROG and NO_X in the presence of sunlight. O₃ and nitrogen dioxide (NO₂) are the principal secondary pollutants. Sources and health effects commonly associated with criteria pollutants are summarized in Table 1: Air Contaminants and Associated Public Health Concerns.

Table 1: Air Contaminants	Table 1: Air Contaminants and Associated Public Health Concerns						
Pollutant	Major Man-Made Sources	Human Health Effects					
Particulate Matter (PM ₁₀ and PM _{2.5})	Power plants, steel mills, chemical plants, unpaved roads and parking lots, woodburning stoves and fireplaces, automobiles and others.	Increased respiratory symptoms, such as irritation of the airways, coughing, or difficulty breathing; asthma; chronic bronchitis; irregular heartbeat; nonfatal heart attacks; and premature death in people with heart or lung disease. Impairs visibility.					
Ozone (O ₃)	Formed by a chemical reaction between reactive organic gases/volatile organic compounds (ROG or VOC)¹ and nitrogen oxides (NO _X) in the presence of sunlight. Motor vehicle exhaust industrial emissions, gasoline storage and transport, solvents, paints and landfills.	Irritates and causes inflammation of the mucous membranes and lung airways; causes wheezing, coughing, and pain when inhaling deeply; decreases lung capacity; aggravates lung and heart problems. Damages plants; reduces crop yield.					
Sulfur Dioxide (SO ₂)	A colorless gas formed when fuel containing sulfur is burned and when gasoline is extracted from oil. Examples are petroleum refineries, cement manufacturing, metal processing facilities, locomotives, and ships.	Respiratory irritant. Aggravates lung and heart problems. In the presence of moisture and oxygen, sulfur dioxide converts to sulfuric acid which can damage marble, iron and steel. Damages crops and natural vegetation. Impairs visibility. Precursor to acid rain.					
Carbon Monoxide (CO)	An odorless, colorless gas formed when carbon in fuel is not burned completely; a component of motor vehicle exhaust.	Reduces the ability of blood to deliver oxygen to vital tissues, affecting the cardiovascular and nervous system. Impairs vision, causes dizziness, and can lead to unconsciousness or death.					
Nitrogen Dioxide (NO ₂)	A reddish-brown gas formed during fuel combustion for motor vehicles and industrial sources. Sources include motor vehicles, electric utilities, and other sources that burn fuel.	Respiratory irritant; aggravates lung and heart problems. Precursor to O ₃ . Contributes to global warming and nutrient overloading which deteriorates water quality. Causes brown discoloration of the atmosphere.					
Lead (Pb)	Lead is a metal found naturally in the environment as well as in manufactured products. The major sources of lead	Exposure to lead occurs mainly through inhalation of air and ingestion of lead in food, water, soil, or dust. It accumulates in the blood,					

Table 1: Air Contaminants and Associated Public Health Concerns						
Pollutant	Major Man-Made Sources	Human Health Effects				
	emissions have historically been motor	bones, and soft tissues and can adversely affect				
	vehicles (such as cars and trucks) and	the kidneys, liver, nervous system, and other				
	industrial sources. Due to the phase out of	organs. Excessive exposure to lead may cause				
	leaded gasoline, metals processing is the	neurological impairments such as seizures,				
	major source of lead emissions to the air	mental retardation, and behavioral disorders.				
	today. The highest levels of lead in air are	Even at low doses, lead exposure is associated				
	generally found near lead smelters. Other	with damage to the nervous systems of fetuses				
	stationary sources are waste incinerators,	and young children, resulting in learning				
	utilities, and lead-acid battery	deficits and lowered IQ.				
	manufacturers.					

Notes

Source: California Air Pollution Control Officers Association (CAPCOA), *Health Effects*, http://www.capcoa.org/health-effects/, Accessed March 16, 2022.

Toxic Air Contaminants

Toxic air contaminants (TACs) are airborne substances that can cause short-term (acute) or long-term (i.e. chronic, carcinogenic or cancer causing) adverse human health effects (i.e. injury or illness). TACs include both organic and inorganic chemical substances. They may be emitted from a variety of common sources including gasoline stations, automobiles, dry cleaners, industrial operations, and painting operations. The current California list of TACs includes more than 200 compounds, including particulate emissions from diesel-fueled engines.

CARB identified diesel particulate matter (DPM) as a toxic air contaminant. DPM differs from other TACs in that it is not a single substance but rather a complex mixture of hundreds of substances. Diesel exhaust is a complex mixture of particles and gases produced when an engine burns diesel fuel. DPM is a concern because it causes lung cancer; many compounds found in diesel exhaust are carcinogenic. DPM includes the particle-phase constituents in diesel exhaust. The chemical composition and particle sizes of DPM vary between different engine types (heavy-duty, light-duty), engine operating conditions (idle, accelerate, decelerate), fuel formulations (high/low sulfur fuel), and the year of the engine. Some short-term (acute) effects of diesel exhaust include eye, nose, throat, and lung irritation, and diesel exhaust can cause coughs, headaches, light-headedness, and nausea. DPM poses the greatest health risk among the TACs. Almost all diesel exhaust particle mass is 10 microns or less in diameter. Due to their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lung.

Ambient Air Quality

CARB monitors ambient air quality at approximately 250 air monitoring stations across the State. These stations usually measure pollutant concentrations ten feet above ground level; therefore, air quality is often referred to in terms of ground-level concentrations. Existing levels of ambient air quality, historical trends, and projections near the Project site are documented by measurements made by the South Coast Air Quality Management District (South Coast AQMD), the air pollution regulatory agency in the SCAB that maintains air quality monitoring stations which process ambient air quality measurements.

Volatile Organic Compounds (VOCs or Reactive Organic Gases [ROG]) are hydrocarbons/organic gases that are formed solely of hydrogen and carbon. There are several subsets of organic gases including ROGs and VOCs. Both ROGs and VOCs are emitted from the incomplete combustion of hydrocarbons or other carbon-based fuels. The major sources of hydrocarbons are combustion engine exhaust, oil refineries, and oil-fueled power plants; other common sources are petroleum fuels, solvents, dry cleaning solutions, and paint (via evaporation).

Pollutants of concern in the SCAB are O_3 , PM_{10} , and $PM_{2.5}$. The air monitoring station nearest the Project site that monitors ambient concentrations of these pollutants is the Compton Monitoring Station (located approximately 7.8 miles to the northeast). The Compton Monitoring Station did not include data for PM10 therefore data from the Long Beach Monitoring Station (located approximately 8.7 miles to the southeast) was used also. Local air quality data for these stations from 2018 to 2020 are provided in <u>Table 2: Ambient Air Quality Data</u>, which lists the monitored maximum concentrations and number of exceedances of California Ambient Air Quality Standards (CAAQS) or National Ambient Air Quality Standards (NAAQS) for each year.

Criteria Pollutant	2018	2019	2020
Ozone (O ₃) ¹			
1-hour Maximum Concentration (ppm)	0.075	0.100	0.152
8-hour Maximum Concentration (ppm)	0.063	0.079	0.085
Number of Days Standard Exceeded			
CAAQS 1-hour (>0.09 ppm)	0	1	3
NAAQS 8-hour (>0.070 ppm)	0	1	4
Carbon Monoxide (CO) ²			
1-hour Maximum Concentration (ppm)	3.854	3.818	4.537
Number of Days Standard Exceeded			
NAAQS 1-hour (>35 ppm)	0	0	0
CAAQS 1-hour (>20 ppm)	0	0	0
Nitrogen Dioxide (NO₂)¹			
1-hour Maximum Concentration (ppm)	0.0683	0.0700	0.0723
Number of Days Standard Exceeded			
NAAQS 1-hour (>0.10 ppm)	0	0	0
CAAQS 1-hour (>0.18 ppm)	0	0	0
Particulate Matter Less Than 10 Microns (PM ₁₀) ³			
National 24-hour Maximum Concentration	55.7	72.7	68.3
State 24-hour Maximum Concentration	55.7	73.8	68.7
State Annual Average Concentration (CAAQS=20 µg/m³)	24.5	21.8	_
Number of Days Standard Exceeded			
NAAQS 24-hour (>150 μg/m³)	0	0	0
CAAQS 24-hour (>50 μg/m³)	1	2	3
Particulate Matter Less Than 2.5 Microns (PM _{2.5}) ¹			
National 24-hour Maximum Concentration	49.4	39.5	67.5
State 24-hour Maximum Concentration	49.4	39.5	67.5
Number of Days Standard Exceeded			
NAAQS 24-hour (>35 μg/m³)	2	1	19

NAAQS = National Ambient Air Quality Standards; CAAQS = California Ambient Air Quality Standards; ppm = parts per million; $\mu g/m^3 = micrograms per cubic meter; - = not measured$

Notes:

- Measurements taken at the Compton-700 North Bullis Road Monitoring Station at 700 North Bullis Road, Compton, California 90221 (CARB# 70112)
- 2. Measurements taken at the Compton-700 North Bullis Road Monitoring Station at 700 North Bullis Road, Compton, California 90221 (CARB# 70112), which is the closet monitoring station that measures CO.
- 3. Measurements taken at the South Long Beach Monitoring Station at 1305 E. Pacific Coast Hwy., Long Beach, California 90744 (CARB# 33165) Source: All pollutant measurements are from the CARB Aerometric Data Analysis and Management system database (https://www.arb.ca.gov/adam) except for CO, which were retrieved from the CARB Air Quality and Meteorological Information System (https://www.arb.ca.gov/aqmis2/aqdselect.php).

2.3 Sensitive Receptors

Sensitive populations are more susceptible to the effects of air pollution than is the general population. Sensitive receptors that are in proximity to localized sources of toxics are of particular concern. Land uses considered sensitive receptors include residences, schools, playgrounds, childcare centers, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. <u>Table 3: Sensitive Receptors</u> lists the sensitive receptors nearest the Project site, which include single- and multifamily residential and educational uses. As shown in <u>Table 3</u>, the nearest sensitive receptor to the Project site are live/work multi-family residences located approximately 15 to the west along Artesia Boulevard.

Table 3: Sensitive Receptors						
Receptor Description	Distance and Direction from the Project	Description				
Live/Work Multi-Family Residences	15 feet to the west	Live/Work Residences adjacent to Project, along Artesia Boulevard				
Single-family Residences	150 feet to the east	Southeast corner of W Cassidy Street and Normandie Avenue				
Single-family Residences	425 feet to the north	Along W 173 rd Street				
School	465 feet to the southeast	Gardena Early Education Center, southeast corner of W177th Street and Normandie Avenue				
Multi-Family Residences	1,080 feet to the south	Along W 179th Street				
Source: Google Earth, 2022.						

3 REGULATORY SETTING

3.1 Federal

Federal Clean Air Act

Air quality is federally protected by the Federal Clean Air Act (FCAA) and its amendments. Under the FCAA, the United States Environmental Protection Agency (EPA) developed the primary and secondary NAAQS for the criteria air pollutants including O_3 , NO_2 , CO, SO_2 , PM_{10} , $PM_{2.5}$, and lead. Proposed projects in or near nonattainment areas could be subject to more stringent air-permitting requirements. The FCAA requires each state to prepare a State Implementation Plan to demonstrate how it will attain the NAAQS within the federally imposed deadlines.

The EPA can withhold certain transportation funds from states that fail to comply with the planning requirements of the FCAA. If a state fails to correct these planning deficiencies within two years of Federal notification, the EPA is required to develop a Federal implementation plan for the identified nonattainment area or areas. The provisions of 40 Code of Federal Regulations Parts 51 and 93 apply in all nonattainment and maintenance areas for transportation-related criteria pollutants for which the area is designated nonattainment or has a maintenance plan. The EPA has designated enforcement of air pollution control regulations to the individual states. Applicable federal standards are summarized in Table 4: State and Federal Ambient Air Quality Standards.

3.2 State of California

California Air Resources Board

CARB administers the air quality policy in California. The CAAQS were established in 1969 pursuant to the Mulford-Carrell Act. These standards, included with the NAAQS in <u>Table 4</u>, are generally more stringent and apply to more pollutants than the NAAQS. In addition to the criteria pollutants, CAAQS have been established for visibility reducing particulates, hydrogen sulfide, and sulfates.

The California Clean Air Act (CCAA), which was approved in 1988, requires that each local air district prepare and maintain an Air Quality Management Plan (AQMP) to achieve compliance with CAAQS. These AQMPs also serve as the basis for the preparation of the State Implementation Plan for meeting federal clean air standards for the State of California. Like the EPA, CARB also designates areas within California as either attainment or nonattainment for each criteria pollutant based on whether the CAAQS have been achieved. Under the CCAA, areas are designated as nonattainment for a pollutant if air quality data shows that a state standard for the pollutant was violated at least once during the previous three calendar years. Exceedances that are affected by highly irregular or infrequent events such as wildfires, volcanoes, etc. are not considered violations of a state standard, and are not used as a basis for designating areas as nonattainment. The applicable State standards are summarized in Table 4.

Table 4: State and Federal Ambient Air Quality Standards						
Pollutant	Averaging Time	State Standards ¹	Federal Standards ²			
Ozono (O.) 2.5.7	8 Hour	0.070 ppm (137 μg/m³)	0.070 ppm			
Ozone (O ₃) ^{2, 5, 7}	1 Hour	0.09 ppm (180 μg/m³)	NA			
Coulous Managida (CO)	8 Hour	9.0 ppm (10 mg/m ³)	9 ppm (10 mg/m ³)			
Carbon Monoxide (CO)	1 Hour	20 ppm (23 mg/m ³)	35 ppm (40 mg/m ³)			
Nitragas Diavida (NO.)	1 Hour	0.18 ppm (339 μg/m³)	0.100 ppm ¹¹			
Nitrogen Dioxide (NO ₂)	Annual Arithmetic Mean	0.030 ppm (57 μg/m ³)	0.053 ppm (100 μg/m³)			
	24 Hour	0.04 ppm (105 μg/m³)	0.14 ppm (365 μg/m ³)			
Sulfur Dioxide (SO ₂) ⁸	1 Hour	0.25 ppm (655 μg/m ³)	0.075 ppm (196 μg/m³)			
	Annual Arithmetic Mean	NA	0.03 ppm (80 μg/m³)			
Darticulate Matter (DM) 136	24-Hour	50 μg/m³	150 μg/m³			
Particulate Matter (PM ₁₀) ^{1, 3, 6}	Annual Arithmetic Mean	20 μg/m³	NA			
Fine Particulate Matter (DM) 3 4 6 9	24-Hour	NA	35 μg/m³			
Fine Particulate Matter (PM _{2.5}) ^{3, 4, 6, 9}	Annual Arithmetic Mean	12 μg/m³	12 μg/m³			
Sulfates (SO ₄₋₂)	24 Hour	25 μg/m³	NA			
	30-Day Average	1.5 μg/m³	NA			
Lead (Pb) ^{10, 11}	Calendar Quarter	NA	1.5 μg/m³			
	Rolling 3-Month Average	NA	0.15 μg/m³			
Hydrogen Sulfide (H₂S)	1 Hour	0.03 ppm (42 μg/m ³)	NA			
Vinyl Chloride (C₂H₃Cl) 10	24 Hour	0.01 ppm (26 μg/m ³)	NA			

Notes:

ppm = parts per million; $\mu g/m^3$ = micrograms per cubic meter; mg/m^3 = milligrams per cubic meter; - = no information available.

- ¹ California standards for O₃, carbon monoxide (except Lake Tahoe), sulfur dioxide (1-hour and 24-hour), nitrogen dioxide, suspended particulate matter PM₁₀, and visibility reducing particles are values that are not to be exceeded. The standards for sulfates, Lake Tahoe carbon monoxide, lead, hydrogen sulfide, and vinyl chloride are not to be equaled or exceeded. If the standard is for a 1-hour, 8-hour or 24-hour average (i.e. all standards except for lead and the PM₁₀ annual standard), then some measurements may be excluded. Measurements are excluded that CARB determines would occur less than once per year on the average. The Lake Tahoe carbon monoxide standard is 6.0 ppm, a level one-half the national standard and two-thirds the State standard.
- National standards shown are the "primary standards" designed to protect public health. National standards other than for O₃, particulates and those based on annual averages are not to be exceeded more than once a year. The 1-hour O₃ standard is attained if, during the most recent three-year period, the average number of days per year with maximum hourly concentrations above the standard is equal to or less than one. The 8-hour O₃ standard is attained when the 3-year average of the 4th highest daily concentrations is 0.070 ppm or less. The 24-hour PM₁₀ standard is attained when the 3-year average of the 99th percentile of monitored concentrations is less than 150 µg/m₃. The 24-hour PM_{2.5} standard is attained when the 3-year average of 98th percentiles is less than 35 µg/m³.
- Except for the national particulate standards, annual standards are met if the annual average falls below the standard at every site. The national annual particulate standard for PM₁₀ is met if the 3-year average falls below the standard at every site. The annual PM_{2.5} standard is met if the 3-year average of annual averages spatially-averaged across officially designed clusters of sites falls below the standard.
 NAAQS are set by the EPA at levels determined to be protective of public health with an adequate margin of safety.
- On October 1, 2015, the national 8-hour O₃ primary and secondary standards were lowered from 0.075 to 0.070 ppm. An area will meet the standard if the fourth-highest maximum daily 8-hour O₃ concentration per year, averaged over three years, is equal to or less than 0.070 ppm. EPA will make recommendations on attainment designations by October 1, 2016, and issue final designations October 1, 2017. Nonattainment areas will have until 2020 to late 2037 to meet the health standard, with attainment dates varying based on the O₃ level in the area.
- ⁵ The national 1-hour O₃ standard was revoked by the EPA on June 15, 2005.
- 6 In June 2002, CARB established new annual standards for PM $_{2.5}$ and PM $_{10}$.
- ⁷ The 8-hour California O₃ standard was approved by the CARB on April 28, 2005 and became effective on May 17, 2006.
- On June 2, 2010, the EPA established a new 1-hour SO₂ standard, effective August 23, 2010, which is based on the 3-year average of the annual 99th percentile of 1-hour daily maximum concentrations. The existing 0.030 ppm annual and 0.14 ppm 24-hour SO₂ NAAQS however must continue to be used until one year following EPA initial designations of the new 1-hour SO₂ NAAQS.
- In December 2012, EPA strengthened the annual PM_{2.5} NAAQS from 15.0 to 12.0 µg/m³. In December 2014, the EPA issued final area designations for the 2012 primary annual PM_{2.5} NAAQS. Areas designated "unclassifiable/attainment" must continue to take steps to prevent their air quality from deteriorating to unhealthy levels. The effective date of this standard is April 15, 2015.
- 10 CARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure below which there are no adverse health effects determined.
- 11 National lead standard, rolling 3-month average: final rule signed October 15, 2008. Final designations effective December 31, 2011.

Source: South Coast Air Quality Management District, Air Quality Management Plan, 2016; California Air Resources Board, Ambient Air Quality Standards, May 6, 2016.

3.3 Regional

South Coast Air Quality Management District

The South Coast AQMD is the air pollution control agency for Orange County and the urban portions of Los Angeles, Riverside, and San Bernardino Counties. The agency's primary responsibility is ensuring that state and federal ambient air quality standards are attained and maintained in the SCAB. The South Coast AQMD is also responsible for adopting and enforcing rules and regulations concerning air pollutant sources, issuing permits for stationary sources of air pollutants, inspecting stationary sources of air pollutants, responding to citizen complaints, monitoring ambient air quality and meteorological conditions, awarding grants to reduce motor vehicle emissions, conducting public education campaigns, and many other activities. All projects are subject to South Coast AQMD rules and regulations in effect at the time of construction.

The South Coast AQMD is also the lead agency in charge of developing the AQMP, with input from the Southern California Association of Governments (SCAG) and CARB. The AQMP is a comprehensive plan that includes control strategies for stationary and area sources, as well as for on-road and off-road mobile sources. SCAG has the primary responsibility for providing future growth projections and the development and implementation of transportation control measures. CARB, in coordination with federal agencies, provides the control element for mobile sources.

The 2016 AQMP was adopted by the South Coast AQMD Governing Board on March 3, 2017. The purpose of the 2016 AQMP is to set forth a comprehensive and integrated program that would lead the SCAB into compliance with the federal 24-hour $PM_{2.5}$ air quality standard, and to provide an update to the South Coast AQMD's commitments towards meeting the federal 8-hour O_3 standards. The 2016 AQMP incorporates the latest scientific and technological information and planning assumptions, including the 2016 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) and updated emission inventory methodologies for various source categories. As part of its air quality planning, SCAG has prepared the Regional Comprehensive Plan and Guide and the Connect SoCal – The 2020-2045 RTP/SCS. The 2020-2045 RTP/SCS was determined to conform to the federally mandated state implementation plan (SIP) for the attainment and maintenance of the NAAQS. Both the Regional Comprehensive Plan and AQMP are based, in part, on projections originating with county and city general plans.

On October 1, 2015, the EPA strengthened the NAAQS for ground-level O_3 . The 2022 AQMP, adopted by the South Coast AQMD Governing Board on December 2, 2022, was developed to address the requirements for meeting the 2015 8-hour O_3 standard. The 2022 AQMP builds upon measures already in place from previous AQMPs. It also includes a variety of additional strategies such as regulation, accelerated deployment of available cleaner technologies (e.g., zero emissions technologies, when cost-effective and feasible, and low NO_X technologies in other applications), best management practices, cobenefits from existing programs (e.g., climate and energy efficiency), incentives, and other FCAA measures to achieve the 2015 8-hour ozone standard. The 2022 AQMP incorporates the latest scientific and technological information and planning assumptions, including the 2020-2045 RTP/SCS and updated emission inventory methodologies for various source categories.

The South Coast AQMD has published the *CEQA Air Quality Handbook* (approved by the South Coast AQMD Governing Board in 1993 and augmented with guidance for Local Significance Thresholds [LST] in 2008). The South Coast AQMD guidance helps local government agencies and consultants to develop environmental documents required by California Environmental Quality Act (CEQA) and provides

identification of suggested thresholds of significance for criteria pollutants for both construction and operation (see discussion of thresholds below). With the help of the CEQA Air Quality Handbook and associated guidance, local land use planners and consultants are able to analyze and document how proposed and existing projects affect air quality in order to meet the requirements of the CEQA review process. The South Coast AQMD periodically provides supplemental guidance and updates to the handbook on their website.

The SCAG is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino, and Imperial Counties and serves as a forum for regional issues relating to transportation, the economy, community development, and the environment. Under federal law, SCAG is designated as a Metropolitan Planning Organization and under State law as a Regional Transportation Planning Agency and a Council of Governments.

The state and federal attainment status designations for the SCAB are summarized in <u>Table 5: South Coast Air Basin Attainment Status</u>. The SCAB is currently designated as a nonattainment area with respect to the State O_3 , PM_{10} , and $PM_{2.5}$ standards, as well as the national 8-hour O_3 and $PM_{2.5}$ standards. The SCAB is designated as attainment or unclassified for the remaining state and federal standards.

Table 5: South Coast Air Basin Attainment Status						
Pollutant	State	Federal				
Ozone (O₃) (1 Hour Standard)	Non-Attainment	Non-Attainment (Extreme)				
Ozone (O₃) (8 Hour Standard)	Non-Attainment	Non-Attainment (Extreme)				
Particulate Matter (PM _{2.5}) (24 Hour Standard)	-	Non-Attainment (Serious)				
Particulate Matter (PM _{2.5}) fo(Annual Standard)	Non-Attainment	Non-Attainment (Moderate)				
Particulate Matter (PM ₁₀) (24 Hour Standard)	Non-Attainment	Attainment (Maintenance)				
Particulate Matter (PM ₁₀) (Annual Standard)	Non-Attainment	-				
Carbon Monoxide (CO) (1 Hour Standard)	Attainment	Attainment (Maintenance)				
Carbon Monoxide (CO) (8 Hour Standard)	Attainment	Attainment (Maintenance)				
Nitrogen Dioxide (NO₂) (1 Hour Standard)	Attainment	Unclassifiable/Attainment				
Nitrogen Dioxide (NO₂) (Annual Standard)	Attainment	Attainment (Maintenance)				
Sulfur Dioxide (SO ₂) (1 Hour Standard)	Attainment	Unclassifiable/Attainment				
Sulfur Dioxide (SO ₂) (24 Hour Standard)	Attainment	-				
Lead (Pb) (30 Day Standard)	-	Unclassifiable/Attainment				
Lead (Pb) (3 Month Standard)	Attainment	-				
Sulfates (SO ₄₋₂) (24 Hour Standard)	Attainment	-				
Hydrogen Sulfide (H₂S) (1 Hour Standard)	Unclassified	-				

Source: South Coast Air Quality Management District, Air Quality Management Plan, 2016; United States Environmental Protection Agency, Nonattainment Areas for Criteria Pollutants (Green Book), 2019.

The following is a list of South Coast AQMD rules that are required of construction activities associated with the Project:

- Rule 402 (Nuisance) This rule prohibits the discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health, or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. This rule does not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals.
- Rule 403 (Fugitive Dust) This rule requires fugitive dust sources to implement best available
 control measures for all sources, and all forms of visible particulate matter are prohibited from
 crossing any property line. This rule is intended to reduce PM₁₀ emissions from any transportation,
 handling, construction, or storage activity that has the potential to generate fugitive dust. PM₁₀
 suppression techniques are summarized below.
 - a) Portions of a construction site to remain inactive longer than a period of three months will be seeded and watered until grass cover is grown or otherwise stabilized.
 - b) All on-site roads will be paved as soon as feasible or watered periodically or chemically stabilized.
 - c) All material transported off-site will be either sufficiently watered or securely covered to prevent excessive amounts of dust.
 - d) The area disturbed by clearing, grading, earthmoving, or excavation operations will be minimized at all times.
 - e) Where vehicles leave a construction site and enter adjacent public streets, the streets will be swept daily or washed down at the end of the workday to remove soil tracked onto the paved surface.
- Rule 1113 (Architectural Coatings) This rule requires manufacturers, distributors, and end users
 of architectural and industrial maintenance coatings to reduce ROG emissions from the use of
 these coatings, primarily by placing limits on the ROG content of various coating categories.

3.4 Local

City of Artesia General Plan

The City of Artesia General Plan contains the following goals and policies that address air quality as part of the Community Development Element, Land Use Plan and Circulation Plan:

Policy 1.1: Prioritize long-term sustainability for the City of Gardena, in alignment with regional and state goals, by promoting infill development, reduced reliance on single-occupancy vehicle trips, and improved multi-modal transportation networks, with the goal of reducing air pollution and greenhouse gas emissions, thereby improving the health and quality of life for residents.

- CI Goal 3: Develop Complete Streets to promote alternative modes of transportation that are safe and efficient for commuters, and available to persons of all income levels and disabilities.
 - Policy 3.4: Maintain a citywide bicycle route and maintenance plan that promotes efficient and safe bikeways integrated with the MTA's regional bicycle system.
 - Policy 3.5: As roadways are repaved or otherwise improved, evaluate opportunities to enhance the quality and safety of the roadway by implementing new or improved walking, bicycling, or public transit infrastructure. If no walking, bicycling, or public transit improvements are being provided, a report to the City Council should provide an explanation for why such improvements are not needed along this roadway segment.
- LU Goal 3: Provide high quality, attractive and well-maintained commercial, industrial, and public environments that enhance the image and vitality of the City.
 - Policy 3.6: New commercial and industrial developments shall meet or exceed local and state requirements pertaining to noise, air, water, seismic safety and any other applicable environmental regulations.
- EJ Goal 1: Reduce greenhouse gas emissions, enhance air quality, and reduce impacts associated with climate change.
 - Policy 1.2: Attract new clean industry to the City which do not emit smoke, noise, offensive odors, or harmful industrial wastes.
 - Policy 1.13: Reduce communitywide greenhouse gas emissions locally by actively supporting regional efforts to reduce greenhouse gases.

4 SIGNIFICANCE CRITERIA AND METHODOLOGY

4.1 Air Quality Thresholds

Based upon the criteria derived from Appendix G of the CEQA Guidelines, a Project normally would have a significant effect on the environment if it would:

- Conflict with or obstruct implementation of the applicable air quality plan.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in nonattainment under an applicable state or federal ambient air quality standard.
- Expose sensitive receptors to substantial pollutant concentrations.
- Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

South Coast AQMD Thresholds

The significance criteria established by South Coast AQMD may be relied upon to make the above determinations. According to the South Coast AQMD, an air quality impact is considered significant if the Project would violate any ambient air quality standard, contribute substantially to an existing or projected air quality violation, or expose sensitive receptors to substantial pollutant concentrations. The South Coast AQMD has established thresholds of significance for air quality during construction and operational activities of land use development projects, as shown in <u>Table 6: South Coast Air Quality Management</u> District Emissions Thresholds.

Table 6: South Coast Air Quality Management District Emissions Thresholds						
Criteria Air Pollutants and Precursors	Maximum Pounds Per Day					
Criteria Ali Poliutants and Precuisors	Construction-Related	Operational-Related				
Reactive Organic Gases (ROG)	75	55				
Carbon Monoxide (CO)	550	550				
Nitrogen Oxides (NO _x)	100	55				
Sulfur Oxides (SO _x)	150	150				
Coarse Particulates (PM ₁₀) 150 150						
Fine Particulates (PM _{2.5}) 55 55						
Source: South Coast Air Quality Management D	istrict, South Coast AQMD Air Quality Significa	nce Thresholds, April 2019.				

Localized Carbon Monoxide

In addition to the daily thresholds listed above, the Project would also be subject to the ambient air quality standards. These are addressed though an analysis of localized CO impacts. The significance of localized impacts depends on whether ambient CO levels near the Project site are above state and federal CO standards (the more stringent California standards are 20 ppm for 1-hour and 9 ppm for 8-hour). The SCAB has been designated as attainment under the 1-hour and 8-hour standards.

Localized Significance Thresholds

In addition to the CO hotspot analysis, the South Coast AQMD developed LSTs for emissions of NO₂, CO, PM₁₀, and PM_{2.5} generated at new development sites (off-site mobile source emissions are not included in the LST analysis). LSTs represent the maximum emissions that can be generated at a project without expecting to cause or substantially contribute to an exceedance of the most stringent state or federal ambient air quality standards. LSTs are based on the ambient concentrations of that pollutant within the Project source receptor area (SRA), as demarcated by the South Coast AQMD, and the distance to the nearest sensitive receptor. LST analysis for construction is applicable for all projects that disturb 5 acres or less on a single day. The City of Gardena is located within South Coast AQMD SRA 3. LST's interpolated at meters (between the 100- and 200-meter threshold) are provided in Table 7: Local Significance Thresholds for Construction/Operations for informational purposes and to demonstrate that the thresholds increase as acreages increase. However, because the nearest sensitive receptors are located 15 feet from the Project site the use the 25-meter thresholds.

Table 7: Local Significance Thresholds for Construction/Operations						
Maximum Pounds Per Day						
Project Size	NO _x	со	PM ₁₀	PM _{2.5}		
1 Acre	91/91	664/664	5/1	3/1		
2 Acres	132/131	967/967	8/2	5/1		
5 Acres	197/197	1,796/1,796	15/4	8/2		

 NO_X = Nitrogen Oxides; CO = Carbon Monoxide; PM_{10} = Particulate Matter 10 microns in diameter or less; $PM_{2.5}$ = Particulate Matter 2.5 microns in diameter or less

Note: Based on a receptor distance of 25 meters in SRA 3.

Source: South Coast Air Quality Management District, Localized Significance Threshold Methodology, July 2008.

4.2 Methodology

This air quality impact analysis considers construction and operational impacts associated with the Project. Where criteria air pollutant quantification was required, emissions were modeled using the California Emissions Estimator Model (CalEEMod). CalEEMod is a Statewide land use emissions computer model designed to quantify potential criteria pollutant emissions associated with both construction and operations from a variety of land use projects. Air quality impacts were assessed according to methodologies recommended by CARB and the South Coast AQMD.

Construction equipment, trucks, worker vehicles, and ground-disturbing activities associated with Project construction would generate emissions of criteria air pollutants and precursors. Daily regional construction emissions are estimated by assuming construction occurs at the earliest feasible date (i.e., a conservative estimate of construction activities) and applying off-road, fugitive dust, and on-road emissions factors in CalEEMod.

Project operations would result in emissions of area sources (consumer products), energy sources (natural gas usage and offsite electrify generation), and mobile sources (motor vehicles from Project generated vehicle trips). Project-generated increases in operational emissions would be predominantly associated with motor vehicle use. The Project vehicle trip generation was obtained from the Project Traffic Study prepared by Kimley-Horn (October 2022), which includes 679 total daily vehicle trips, which include 65 daily truck trips.

As discussed above, the South Coast AQMD provides significance thresholds for emissions associated with Project construction and operations. The Project's construction and operational emissions are compared to the daily criteria pollutant emissions significance thresholds to determine the significance of a Project's impact on regional air quality.

The localized effects from the Project's on-site emissions were evaluated in accordance with the South Coast AQMD's Localized Significance Threshold (LST) Methodology, which uses on-site mass emissions rate look-up tables and Project-specific modeling. LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standards and are developed based on the ambient concentrations of that pollutant for each source receptor area and distance to the nearest sensitive receptor.

5 POTENTIAL IMPACTS

5.1 Air Quality Analysis

Threshold 5.1 Would the Project conflict with or obstruct implementation of the applicable air quality plan?

As part of its enforcement responsibilities, the EPA requires each state with nonattainment areas to prepare and submit a State Implementation Plan that demonstrates the means to attain the federal standards. The State Implementation Plan must integrate federal, state, and local plan components and regulations to identify specific measures to reduce pollution in nonattainment areas, using a combination of performance standards and market-based programs. Similarly, under State law, the CCAA requires an air quality attainment plan to be prepared for areas designated as nonattainment regarding the state and federal ambient air quality standards. Air quality attainment plans outline emissions limits and control measures to achieve and maintain these standards by the earliest practical date.

The Project is located within the SCAB, which is under the jurisdiction of the South Coast AQMD. The South Coast AQMD is required, pursuant to the FCAA, to reduce emissions of criteria pollutants for which the SCAB is in nonattainment. To reduce such emissions, the South Coast AQMD adopted the 2016 and 2022 AQMPs (AQMPs). The AQMPs establish a program of rules and regulations directed at reducing air pollutant emissions and achieving state (California) and national air quality standards. The AQMPs are a regional and multi-agency effort including the South Coast AQMD, the CARB, the SCAG, and the EPA. The AQMPs pollutant control strategies are based on the latest scientific and technical information and planning assumptions, including SCAG's RTP/SCS, updated emission inventory methodologies for various source categories, and SCAG's latest growth forecasts. SCAG's latest growth forecasts were defined in consultation with local governments and with reference to local general plans. The project is subject to the South Coast AQMD's AQMPs.

Criteria for determining consistency with the AQMPs are defined by the following indicators:

- **Consistency Criterion No. 1**: The Project will not result in an increase in the frequency or severity of existing air quality violations, or cause or contribute to new violations, or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMPs.
- **Consistency Criterion No. 2**: The Project will not exceed the assumptions in the AQMPs or increments based on the years of the Project build-out phase.

According to the South Coast AQMD's *CEQA Air Quality Handbook*, the purpose of the consistency finding is to determine if a project is inconsistent with the assumptions and objectives of the regional air quality plans, and thus if it would interfere with the region's ability to comply with CAAQS and NAAQS.

The violations to which Consistency Criterion No. 1 refers are CAAQS and NAAQS. As shown in <u>Table 8</u> and <u>Table 9</u>, the Project would not exceed construction or operation emission standards. Therefore, the Project would not contribute to an existing air quality violation. Thus, the Project is consistent with the first criterion.

Concerning Consistency Criterion No. 2, the AQMPs contains air pollutant reduction strategies based on SCAG's latest growth forecasts, and SCAG's growth forecasts were defined in consultation with local

February 2023

governments and with reference to local general plans. The Project site's current land use designation is mix of Industrial and vacant and the Project is consistent with the land use designation and development density presented in the City's General Plan and therefore would not exceed the population or job growth projections used by the South Coast AQMD to develop the AQMPs. Thus, the Project is consistent with the second criterion.

Based on these criteria, the Project would not conflict with or obstruct implementation of the AQMPs.

Mitigation Measures: No mitigation is required

Level of Significance: Less than significant impact.

Threshold 5.2 Would the Project result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is non-attainment under an applicable state or federal ambient air quality standard?

Construction Emissions

Construction associated with the Project would generate short-term emissions of criteria air pollutants. The criteria pollutants of primary concern within the Project area include O_3 -precursor pollutants (i.e. ROG and NO_X) and PM_{10} and $PM_{2.5}$. Construction-generated emissions are short term and of temporary duration, lasting only as long as construction activities occur, but would be considered a significant air quality impact if the volume of pollutants generated exceeds the South Coast AQMD's thresholds of significance.

Construction results in the temporary generation of emissions resulting from site grading, road paving, motor vehicle exhaust associated with construction equipment and worker trips, and the movement of construction equipment, especially on unpaved surfaces. Emissions of airborne particulate matter are largely dependent on the amount of ground disturbance associated with site preparation activities as well as weather conditions and the appropriate application of water.

Construction activities associated with the Project are estimated to be completed within 1 year. Construction-generated emissions associated the Project were calculated using the CARB-approved CalEEMod computer program, which is designed to model emissions for land use development projects, based on typical construction requirements. See Appendix Data for more information regarding the construction assumptions used in this analysis. Predicted maximum daily construction-generated emissions for the Project are summarized in in Table 8: Construction-Related Emissions.

Fugitive dust emissions may have a substantial, temporary impact on local air quality. In addition, fugitive dust may be a nuisance to those living and working in the Project vicinity. Uncontrolled dust from construction can become a nuisance and potential health hazard to those living and working nearby. South Coast AQMD Rules 402 and 403 (prohibition of nuisances, watering of inactive and perimeter areas, track out requirements, etc.), are applicable to the Project and were applied in CalEEMod to minimize fugitive dust emissions. Standard Condition AQ-1 requires the implementation of Rule 402 and 403 dust control

techniques to minimize PM₁₀ and PM_{2.5} concentrations.² This standard condition would be required to ensure compliance with South Coast AQMD Rules and Regulations, which would be verified and enforced through the City's development review process. Rule 1113 provides specifications on painting practices and regulates the ROG content of paint. As required by law, all architectural coatings for the Project structures would comply with South Coast AQMD Rule 1113. Standard Condition AQ-2 requires implementation of Rule 1113 which limits the VOC content of paint to 50 grams per liter or less.³ Compliance with AQ-2 would be required to ensure compliance with South Coast AQMD Rules and Regulations, which would be verified and enforced through the City's development review process.

Table 8: Construction-Related Emissions							
Construction Year	Maximum Pounds Per Day						
Construction real	ROG	NO _x	со	SO ₂	PM ₁₀	PM _{2.5}	
Year 1 (2023)	0.71	5.91	23.91	0.05	8.68	4.64	
Year 2 (2024)	39.29	4.04	22.23	0.04	1.04	0.32	
South Coast AQMD Threshold	75	100	550	150	55	150	
Exceed South Coast AQMD Threshold?	No	No	No	No	No	No	

ROG = Reactive Organic Gases; NO_X = Nitrogen Oxides; CO = Carbon Monoxide; SO_2 = Sulfur Dioxide; PM_{10} = Particulate Matter 10 microns in diameter or less; $PM_{2.5}$ = Particulate Matter 2.5 microns in diameter or less

Notes: South Coast AQMD Rule 403 Fugitive Dust applied. The Rule 403 reduction/credits include the following: properly maintain mobile and other construction equipment; water exposed surfaces three times daily; and limit speeds on unpaved roads to 15 miles per hour. Reductions percentages from the South Coast AQMD CEQA Handbook (Tables XI-A through XI-E) were applied. No adjustments were applied to equipment exhaust. Refer to Appendix A for Model Data Outputs.

Source: CalEEMod version 2020.4.0. Refer to Appendix A for model outputs.

As shown in <u>Table 8</u>, all criteria pollutant emissions would remain below their respective thresholds. While impacts would be considered less than significant, the Project would be subject to South Coast AQMD Rules 402, 403, and 1113, described in the Regulatory Framework subsection above and required by Standard Conditions AQ-1 and AQ-2.⁴

Operational Emissions

Project-generated emissions would be primarily associated with motor vehicle use and area sources, such as the use of landscape maintenance equipment and architectural coatings. Long-term operational emissions attributable to the Project are summarized in <u>Table 9: Operational Emissions</u>. Note that emissions rates differ from summer to winter because different weather patterns affect pollutant mixing, dispersion, O₃ formation, and other factors. <u>Table 9</u> also provides the emissions associated with operations of the two existing industrial/office buildings totaling approximately 136,098 square feet. As shown in <u>Table 9</u>, the operational Project emissions are below the South Coast AQMD's thresholds, impacts would be less than significant.

² Standard Conditions are existing requirements and conditions of approval that are based on local, state, or federal regulations or laws that are frequently required independently of CEQA review. Applicable Standard Conditions are included at the end of this impact analysis.

 $^{^{\}rm 3}$ Applicable Standard Conditions are included at the end of this impact analysis.

⁴ Ibid.

Table 9: Operational Emission	ns							
Cauran			Maximum P	ounds Per Da	ny			
Source	ROG	NO _x	СО	SO ₂	PM ₁₀	PM _{2.5}		
Existing Conditions ¹								
Area	0.38	<0.01	<0.01	0.00	<0.01	<0.01		
Energy	<0.01	0.05	0.04	0.00	<0.01	<0.01		
Mobile	0.30	0.35	3.19	<0.01	0.69	0.19		
Total Emissions	0.69	0.40	3.24	<0.01	0.69	0.19		
		Proposed	Project					
Summer Emissions				•	,	•		
Area	6.03	<0.01	0.03	0.00	<0.01	<0.01		
Energy	0.07	0.62	0.52	<0.01	0.05	0.05		
Mobile	2.26	2.38	24.38	0.06	6.16	1.67		
Mobile – Special Events ²	0.62	0.66	6.79	0.02	1.71	0.46		
Offroad - Forklifts	0.55	4.88	7.12	0.01	0.23	0.22		
Stationary	0.07	0.34	0.26	<0.01	0.03	0.03		
Total Emissions	9.60	8.88	39.12	0.09	8.18	2.43		
Winter Emissions								
Area	6.03	<0.01	0.05	0.00	<0.01	<0.01		
Energy	0.07	0.62	0.52	<0.01	0.05	0.05		
Mobile	2.22	2.57	23.73	0.05	6.16	1.67		
Mobile – Special Events ²	0.63	0.71	6.60	0.02	1.71	0.46		
Offroad - Forklifts	0.55	4.88	7.21	0.01	0.23	0.22		
Stationary	0.07	0.34	0.26	<0.01	0.03	0.03		
Total Emissions	9.60	9.12	38.28	0.07	8.18	2.43		
		Net Emis	ssions	•				
Existing Conditions	0.69	0.40	3.24	<0.01	0.69	0.19		
Proposed Project ¹	9.60	9.12	39.12	0.09	8.18	2.43		
Net Change	8.91	8.72	35.88	0.09	7.49	2.24		
South Coast AQMD Significance Thresholds	55	55	550	150	55	150		
Exceed thresholds?	No	No	No	No	No	No		
						•		

ROG = Reactive Organic Gases; NO_X = Nitrogen Oxides; NO_X = Nitr

Note: Total values are from CalEEMod and may not add up 100% due to rounding.

- 1. The highest values between summer and winter results were used as a worst-case scenario
- 2. Though special events are only expected to occur a few days a month, the operational analysis assumes the potential maximum emissions per day.

Source: CalEEMod version 2020.4.0. Refer to Appendix A for model outputs.

Special Events

The various special events to be hosted two to three times per month are anticipated to attract an average of 250 attendees in addition to the 679 estimated daily vehicle trips. These 250 attendees are estimated to generate an additional 220 vehicle trips to the Project site on special event days. To analyze the maximum daily emissions per South Coast AQMD methodology, special event trips were included in the Project's operational emissions in <u>Table 9</u>.

As noted above, the Project's operational emissions would be associated with mobile sources (i.e., motor vehicle use), energy sources, and area sources. Each of these sources are described below.

- Area Source Emissions. Area source emissions would be generated due to on-site equipment, architectural coating, and landscape maintenance equipment that were previously not present on the site.
- Energy Source Emissions. Energy source emissions would be generated due to electricity and natural gas usage associated with the Project. Primary uses of electricity and natural gas by the Project would be for miscellaneous warehouse equipment, space heating and cooling, water heating, ventilation, lighting, appliances, and electronics.
- Off-Road Equipment. Operational off-road emissions would be generated by off-road cargo handling equipment used during operational activities. For this project it was assumed that the warehouses would include three forklifts and one yard truck per South Coast AQMD data. 6
- Emergency Backup Generators. As the Project warehouse is speculative, it is unknown whether emergency backup generators would be used. Backup generators would only be used in the event of a power failure and would not be part of the Project's normal daily operations. Nonetheless, emissions associated with this equipment were included to be conservative. Emissions from an emergency backup generator for each warehouse building were calculated separately from CalEEMod; refer to Appendix A. However, CalEEMod default emissions rates were used. If backup generators are required, the end user would be required to obtain a permit from the South Coast AQMD prior to installation. Emergency backup generators must meet South Coast AQMD's Best Available Control Technology (BACT) requirements and comply with South Coast AQMD Rule 1470 (Requirements for Stationary Diesel-Fueled Internal Combustion and Other Compression Ignition Engines), which would minimize emissions.
- Mobile Source Emissions. Mobile sources are emissions from motor vehicles, including tailpipe and evaporative emissions. Depending upon the pollutant being discussed, the potential air quality impact may be of either regional or local concern. For example, ROG, NO_X, PM₁₀, and PM_{2.5} are all pollutants of regional concern. NO_X and ROG react with sunlight to form O₃, known as photochemical smog. Additionally, wind currents readily transport PM₁₀ and PM_{2.5}. However, CO tends to be a localized pollutant, dispersing rapidly at the source.

February 2023

⁵ Kimley-Horn and Associates, 1450 Artesia Blvd Special Events Trip Generation Technical Memorandum, October 2022.

⁶ South Coast Air Quality Management District, *High Cube Warehouse Truck Trip Study White Paper Summary of Business Survey Results*, June 2014.

Project-generated vehicle emissions are based on the trip generation within the Project Traffic Study and incorporated into CalEEMod as recommended by the South Coast AQMD. Per the Project Traffic Study and the *1450 Artesia Blvd Special Events Trip Generation Technical Memorandum* (Special Events Trip Generation Memorandum) (Kimley-Horn, October 2022), the Project would generate 679 daily vehicle trips (614 passenger cars and 65 trucks) and an additional 220 vehicle trips during special event days.

<u>Table 9</u> shows that Project emissions would be below South Coast AQMD thresholds for each of the criteria pollutants analyzed. As such, the Project would not violate any air quality standards or contribute substantially to an existing or projected air quality violation. As a result, impacts associated with operational air quality would be less than significant.

Cumulative Short-Term Emissions

The SCAB is designated nonattainment for O_3 , PM_{10} , and $PM_{2.5}$ for State standards and nonattainment for O_3 and $PM_{2.5}$ for Federal standards. Appendix D of the South Coast AQMD White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution (2003) notes that projects that result in emissions that do not exceed the project-specific South Coast AQMD regional thresholds of significance should result in a less than significant impact on a cumulative basis unless there is other pertinent information to the contrary. Therefore, if a project is estimated to result in emissions that do not exceed the thresholds, the project's contribution to the cumulative impact on air quality in the SCAB would not be cumulatively considerable. As shown in Table 8 above, Project construction-related emissions by themselves would not exceed the South Coast AQMD significance thresholds for criteria pollutants. Therefore, the proposed Project would not generate a cumulatively considerable contribution to air pollutant emissions during construction.

The South Coast AQMD has developed strategies to reduce criteria pollutant emissions outlined in the AQMPs pursuant to the FCAA mandates. The analysis assumed fugitive dust controls would be utilized during construction, including frequent water applications. South Coast AQMD rules, mandates, and compliance with adopted AQMPs emissions control measures would also be imposed on construction projects throughout the SCAB, which would include related projects. Compliance with South Coast AQMD rules and regulations would further reduce the Project construction-related impacts. Therefore, Project-related construction emissions, combined with those from other projects in the area, would not substantially deteriorate local air quality. Construction emissions associated with the Project would not result in a cumulatively considerable contribution to significant cumulative air quality impacts.

Cumulative Long-Term Impacts

The South Coast AQMD has not established separate significance thresholds for cumulative operational emissions. The nature of air emissions is largely a cumulative impact. As a result, no single project is sufficient in size to, by itself, result in nonattainment of ambient air quality standards. Instead, individual project emissions contribute to existing cumulatively significant adverse air quality impacts. The South Coast AQMD developed the operational thresholds of significance based on the level above which individual project emissions would result in a cumulatively considerable contribution to the SCAB's existing air quality conditions. Therefore, a project that exceeds the South Coast AQMD operational thresholds would also be a cumulatively considerable contribution to a significant cumulative impact. As shown in Table 9, the Project operational emissions would not exceed the South Coast AQMD thresholds. Therefore, impacts would be less than significant.

Standard Conditions and Requirements:

Standard Conditions are existing requirements and conditions of approval that are based on local, state, or federal regulations or laws that are frequently required independently of CEQA review. Typical standard conditions and requirements include compliance with the provisions of the Building Code, South Coast AQMD Rules, etc. The City may impose additional conditions during the approval process, as appropriate. Because Standard Conditions are neither Project specific nor a result of development of the Project, they are not considered to be Mitigation Measures.

- SC AQ-1 Prior to the issuance of grading permits, the City Engineer shall confirm that the Grading Plan, Building Plans and Specifications require all construction contractors to comply with South Coast Air Quality Management District's (South Coast AQMD's) Rules 402 and 403 to minimize construction emissions of dust and particulates. The measures include, but are not limited to, the following:
 - Portions of a construction site to remain inactive longer than a period of three months will be seeded and watered until grass cover is grown or otherwise stabilized.
 - All on-site roads will be paved as soon as feasible or watered periodically or chemically stabilized.
 - All material transported off site will be either sufficiently watered or securely covered to prevent excessive amounts of dust.
 - The area disturbed by clearing, grading, earthmoving, or excavation operations will be minimized at all times.
 - Where vehicles leave a construction site and enter adjacent public streets, the streets
 will be swept daily or washed down at the end of the work day to remove soil tracked
 onto the paved surface.
- SC AQ-2 The applicant shall require by contract specifications that the interior and exterior architectural coatings (paint and primer including parking lot paint) products used would comply with South Coast AQMD Rule 1113 which requires building envelope coatings to have a volatile organic compound rating of 50 grams per liter or less.
- **SC AQ-3** Require diesel powered construction equipment to turn off when not in use per Title 13 of the California Code of Regulations, Section 2449.
- SC AQ-4 Install water-efficient irrigation systems and devices, such as soil moisture-based irrigation controls and sensors for landscaping according to the City's Water Efficient Landscape requirements (Chapter 15.60 of the City's Municipal Code).
- SC AQ-5 The Project shall be designed in accordance with the applicable Title 24 Energy Efficiency Standards for Nonresidential Buildings (California Code of Regulations [CCR], Title 24, Part 6). These standards are updated, nominally every three years, to incorporate improved energy efficiency technologies and methods. The Building Official, or designee shall ensure compliance prior to the issuance of each building permit. The Title 24 Energy Efficiency Standards (Section 110.10) require buildings to be designed to have 15 percent of the roof

area "solar ready" that will structurally accommodate later installation of rooftop solar panels. If future building operators pursue providing rooftop solar panels, they will submit plans for solar panels prior to occupancy.

- SC AQ-6 The Project shall be designed in accordance with the applicable California Green Building Standards (CALGreen) Code (24 CCR, Part 11). The Building Official, or designee shall ensure compliance prior to the issuance of each building permit. These requirements include, but are not limited to:
 - Design buildings to be water-efficient. Install water-efficient fixtures in accordance with Section 5.303 (nonresidential) of the California Green Building Standards Code Part 11.
 - Recycle and/or salvage for reuse a minimum of 65 percent of the nonhazardous construction and demolition waste in accordance with Section 5.408.1 (nonresidential) of the California Green Building Standards Code Part 11.
 - Provide storage areas for recyclables and green waste and adequate recycling containers located in readily accessible areas in accordance Section 5.410 (nonresidential) of the California Green Building Standards Code Part 11.
 - Provide designated parking for any combination of low-emitting, fuel efficient and carpool/van pool vehicles. At least eight percent of the total parking spaces are required to be designated in accordance Section 5.106.5.2 (nonresidential), Designated Parking for Clean Air Vehicles, of the California Green Building Standards Code Part 11.
 - To facilitate future installation of electric vehicle supply equipment (EVSE), nonresidential construction shall comply with Section 5.106.5.3 (nonresidential electric vehicle charging) of the California Green Building Standards Code Part 11.

Mitigation Measures: No mitigation is required

Level of Significance: Less than significant impact.

Threshold 5.3 Would the Project expose sensitive receptors to substantial pollutant concentrations?

Localized Construction Significance Analysis

The nearest sensitive receptors consist of the live/work multi-family residences located approximately 15 feet to the west of the Project site along Artesia Boulevard. To identify impacts to sensitive receptors, the South Coast AQMD recommends addressing LSTs for construction. LSTs were developed in response to South Coast AQMD Governing Boards' Environmental Justice Enhancement Initiative (I-4). The South Coast AQMD provided the Final Localized Significance Threshold Methodology (dated June 2003 [revised 2008]) for guidance. The LST methodology assists lead agencies in analyzing localized impacts associated with Project-specific emissions.

Since CalEEMod calculates construction emissions based on the number of equipment hours and the maximum daily soil disturbance activity possible for each piece of equipment, <u>Table 10: Equipment-Specific Grading Rates</u>, is used to determine the maximum daily disturbed acreage for comparison to LSTs. The Project is located within SRA 3 (Southwest Costal LA County). LSTs apply to CO, NO₂, PM₁₀, and PM_{2.5}. The South Coast AQMD produced look-up tables for projects that disturb areas less than or equal to 5

acres in size. Project construction is anticipated to disturb a maximum of 2.5 acres in a single day. As the LST guidance provides thresholds for projects disturbing 1-, 2-, and 5-acres in size and the thresholds increase with size of the site, the LSTs for a 2.5-acre threshold were interpolated and utilized for this analysis.

Table 10: Equipment-Specific Grading Rates								
Construction Equipment Equipment Acres Graded Operating Hours Acres Graded								
Phase	Туре	Quantity	per 8-Hour Day	per Day	per Day			
	Tractors	3	0.5	8	1.5			
Grading	Graders	1	0.5	8	0.5			
	Dozers	1	0.5	8	0.5			
Total Acres Graded per Day 2.5								
Source: CalEEMod version	n 2020.4.0. Refer to Appendi	x A: Air Quality Modelin	g Data for model outp	uts.				

The South Coast AQMD's methodology states that "off-site mobile emissions from the Project should not be included in the emissions compared to LSTs." Therefore, only emissions included in the CalEEMod "onsite" emissions outputs were considered. The nearest sensitive receptors are residences located approximately 15 feet (4.5 meters) west of the Project site. LST thresholds are provided for distances to sensitive receptors of 25, 50, 100, 200, and 500 meters. South Coast AQMD's LST guidance recommends using the 25-meter threshold for receptors located 25 meters or less from the project site. Therefore, the LSTs for 2.5 acres at 25 meters were used for the construction analysis which is consistent with the South Coast AQMD LST methodology. Table 11: Localized Significance of Construction Emissions, presents the results of localized emissions during each construction phase. Table 11 shows that emissions of these pollutants on the peak day of construction would not result in significant concentrations of pollutants at nearby sensitive receptors. Significant impacts would not occur concerning LSTs during construction.

Table 11: Localized Significance of Construction Emissions					
Construction Activity	Maximum Pounds Per Day				
	NO _x	со	PM ₁₀	PM _{2.5}	
Demolition	2.00	23.28	0.26	0.09	
Site Preparation	2.02	20.87	8.34	4.55	
Grading	5.86	16.47	3.05	1.68	
Building Construction	2.23	17.46	0.04	0.04	
Paving	1.22	17.30	0.04	0.04	
Architectural Coating	0.13	1.83	<0.01	<0.01	
South Coast AQMD Localized Screening Threshold (adjusted for 2.5 acres at 25 meters)	142	1,105	9	6	
Exceed South Coast AQMD Threshold?	No	No	No	No	

 NO_X = Nitrogen Oxides; CO = Carbon Monoxide; PM_{10} = Particulate Matter 10 microns in diameter or less; $PM_{2.5}$ = Particulate Matter 2.5 microns in diameter or less

Source: CalEEMod version 2020.4.0. Refer to Appendix A: Air Quality Modeling Data for model outputs.

Localized Operational Significance Analysis

According to the South Coast AQMD LST methodology, LSTs would apply to the operational phase of a project only if it includes stationary sources or attracts mobile sources that may spend long periods queuing and idling at the site (e.g., warehouse or transfer facilities). Since the Project contains self-storage and industrial uses, the operational phase LST protocol is conservatively applied to both the area source

and 20 percent the mobile source emissions. LST thresholds for receptors were used for 25 meters because the closest receptors are 15 feet (4.5 meters) away, using South Coast AQMD methodology. Although the Project site is approximately 6.33 acres, the 5-acre LST threshold was also conservatively for the Project, as the LSTs increase with the size of the site.

The LST analysis only includes on-site sources. However, the CalEEMod model outputs do not separate on- and off-site emissions for mobile sources. For a worst-case scenario assessment, the emissions shown in <u>Table 12</u>: <u>Localized Significance of Operational Emissions</u>, conservatively include all on-site Project-related stationary sources and 20 percent of the Project-related new mobile sources, since a portion of mobile sources could include trucks idling on-site and that trucks account for roughly 10 percent of trip generation. <u>Table 12</u> shows that the maximum daily emissions of these pollutants during operations would not result in significant concentrations of pollutants at nearby sensitive receptors. Therefore, significant impacts would not occur concerning LSTs during operational activities.

Activity	Maximum Pounds Per Day				
	NO _x	со	PM ₁₀	PM _{2.5}	
On-Site and 20% Mobile Emissions	2.57	7.07	1.66	0.51	
South Coast AQMD Localized Screening Threshold (5 acres at 25 meters)	142	1,105	2	1	
Exceed South Coast AQMD Threshold?	No	No	No	No	

 NO_X = Nitrogen Oxides; CO = Carbon Monoxide; PM_{10} = Particulate Matter 10 microns in diameter or less; $PM_{2.5}$ = Particulate Matter 2.5 microns in diameter or less

Criteria Pollutant Health Impacts

Source: CalEEMod version 2020.4.0. Refer to Appendix A for model outputs.

On December 24, 2018, the California Supreme Court issued an opinion identifying the need to provide sufficient information connecting a project's air emissions to health impacts or explain why such information could not be ascertained (*Sierra Club v. County of Fresno* [Friant Ranch, L.P.] [2018] Cal.5th, Case No. S219783).

The Friant Ranch project was a 942-acre Specific Plan that involved a commercial master planned community of approximately 2,500 dwelling units and extensive commercial supporting development. The anticipated air quality impacts resulting from this development included significant and unavoidable emissions of multiple criteria pollutants (including significant emissions of both primary O_3 precursors [NO_X and ROGs]) at levels that exceeded the daily thresholds of significance. As noted above and shown in <u>Table 9</u>, the Project's operational emissions are below South Coast AQMD's significance thresholds, resulting in a less than significant impact.

The South Coast AQMD has set its CEQA significance thresholds based on the FCAA, which defines a major stationary source (in extreme ozone nonattainment areas such as the South Coast Air Basin) as emitting 10 tons per year. The thresholds correlate with the trigger levels for the federal New Source Review (NSR) Program and South Coast AQMD Rule 1303 for new or modified sources. The NSR Program⁷ was created by the FCAA to ensure that stationary sources of air pollution are constructed or modified in a manner

February 2023

⁷ Code of Federal Regulation (CFR) [i.e., PSD (40 CFR 52.21, 40 CFR 51.166, 40 CFR 51.165 (b)), Non-attainment NSR (40 CFR 52.24, 40 CFR 51.165, 40 CFR part 51, Appendix S)

that is consistent with attainment of health-based federal ambient air quality standards. The federal ambient air quality standards establish the levels of air quality necessary, with an adequate margin of safety, to protect the public health. Therefore, projects that do not exceed the South Coast AQMD's LSTs and mass emissions thresholds would not violate any air quality standards or contribute substantially to an existing or projected air quality violation and no criteria pollutant health impacts.

 NO_X and ROG are precursor emissions that form ozone in the atmosphere in the presence of sunlight where the pollutants undergo complex chemical reactions. It takes time and the influence of meteorological conditions for these reactions to occur, so ozone may be formed at a distance downwind from the sources. Breathing ground-level ozone can result in health effects that include: reduced lung function, inflammation of airways, throat irritation, pain, burning, or discomfort in the chest when taking a deep breath, chest tightness, wheezing, or shortness of breath. In addition to these effects, evidence from observational studies strongly indicates that higher daily ozone concentrations are associated with increased asthma attacks, increased hospital admissions, increased daily mortality, and other markers of morbidity. The consistency and coherence of the evidence for effects upon asthmatics suggests that ozone can make asthma symptoms worse and can increase sensitivity to asthma triggers.

According to the South Coast AQMPs, ozone, NO_x, and ROG have been decreasing in the Basin since 1975 and are projected to continue to decrease in the future. Although vehicle miles traveled in the Basin continue to increase, NO_x and ROG levels are decreasing because of the mandated controls on motor vehicles and the replacement of older polluting vehicles with lower-emitting vehicles. NO_x emissions from electric utilities have also decreased due to the use of cleaner fuels and renewable energy. The 2022 AQMP demonstrates how the South Coast AQMD's control strategy to meet the 2015 federal ozone standard by 2037 and would lead to sufficient NO_x emission reductions. In addition, since NO_x emissions also lead to the formation of PM_{2.5}, the NO_x reductions needed to meet the ozone standards will likewise lead to improvement of PM_{2.5} levels and attainment of PM_{2.5} standards.

The South Coast AQMD's air quality modeling demonstrates that NO_X reductions prove to be much more effective in reducing ozone levels and will also lead to significant improvement in $PM_{2.5}$ concentrations. NO_X -emitting stationary sources regulated by the South Coast AQMD include Regional Clean Air Incentives Market (RECLAIM) facilities (e.g., refineries, power plants, etc.), natural gas combustion equipment (e.g., boilers, heaters, engines, burners, flares) and other combustion sources that burn wood or propane. The AQMPs identify robust NO_X reductions from new regulations on RECLAIM facilities, non-refinery flares, commercial cooking, and residential and commercial appliances. Such combustion sources are already heavily regulated with the lowest NO_X emissions levels achievable but there are opportunities to require and accelerate replacement with cleaner zero-emission alternatives, such as residential and commercial furnaces, pool heaters, and backup power equipment. The South Coast AQMD plans to achieve such replacements through a combination of regulations and incentives. Technology-forcing regulations can drive development and commercialization of clean technologies, with future year requirements for new or existing equipment. Incentives can then accelerate deployment and enhance public acceptability of new technologies.

As previously discussed, localized effects of on-site Project emissions on nearby receptors were found to be less than significant (refer to <u>Table 11</u> and <u>Table 12</u>). The LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable state or federal ambient air quality standard. The LSTs were developed by the South Coast AQMD based on the ambient concentrations of that pollutant for each SRA and distance to the nearest sensitive receptor. The ambient air quality standards establish the levels of air quality necessary, with an adequate margin of safety, to protect public health, including protecting the health of sensitive populations.

Information on health impacts related to exposure to ozone and particulate matter emissions published by the U.S. EPA and CARB have been summarized above and discussed in the Regulatory Framework section. As shown above, Project-related emissions would not exceed the regional thresholds or the LSTs, and therefore would not exceed the ambient air quality standards or cause an increase in the frequency or severity of existing violations of air quality standards. Therefore, sensitive receptors would not be exposed to criteria pollutant levels in excess of the health-based ambient air quality standards.

Carbon Monoxide Hotspots

An analysis of CO "hot spots" is needed to determine whether the change in the level of service of an intersection resulting from the Project would have the potential to result in exceedances of the CAAQS or NAAQS. It has long been recognized that CO exceedances are caused by vehicular emissions, primarily when vehicles are idling at intersections. Vehicle emissions standards have become increasingly stringent in the last 20 years. Currently, the CO standard in California is a maximum of 3.4 grams per mile for passenger cars (requirements for certain vehicles are more stringent). With the turnover of older vehicles, introduction of cleaner fuels, and implementation of control technology on industrial facilities, CO concentrations have steadily declined. Accordingly, with the steadily decreasing CO emissions from vehicles, even very busy intersections do not result in exceedances of the CO standard.

The South Coast Air Basin (SCAB) was re-designated as attainment in 2007 and is no longer addressed in the South Coast AQMD's AQMP. The 2003 AQMP is the most recent version that addresses CO concentrations. As part of the South Coast AQMD CO Hotspot Analysis, the Wilshire Boulevard/Veteran Avenue intersection, one of the most congested intersections in Southern California with an average daily traffic (ADT) volume of approximately 100,000 vehicles per day, was modeled for CO concentrations. This modeling effort identified a CO concentration high of 4.6 ppm, which is well below the 35-ppm Federal standard. The Project considered herein would not produce the volume of traffic required to generate a CO hot spot in the context of South Coast AQMD's CO Hotspot Analysis. As the CO hotspots were not experienced at the Wilshire Boulevard/Veteran Avenue intersection even as it accommodates 100,000 vehicles daily, it can be reasonably inferred that CO hotspots would not be experienced at any vicinity intersections resulting from 679 daily vehicle trips (from a conservatively assumed 0 daily existing trips) attributable to the Project. Therefore, impacts would be less than significant.

Construction-Related Health Risk Analysis

Construction of the Project would result in the generation of DPM emissions from the use of required offroad diesel equipment required. The amount to which the receptors are exposed (a function of concentration and duration of exposure) is the primary factor used to determine health risk (i.e., potential exposure to TAC emission levels that exceed applicable standards). Health-related risks associated with diesel-exhaust emissions are primarily linked to long-term exposure and the associated risk of contracting cancer.

A Health Risk Assessment (HRA) (1450 Artesia Boulevard SP Project Health Risk Assessment, prepared by Kimley-Horn, October 2022) was conducted based on the South Coast AQMD's Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis and the South Coast AQMD Risk Assessment Procedures and the guidance from OEHHA. Construction-related activities would result in Project-generated emissions of DPM from the exhaust of off-road, heavy-duty diesel equipment for demolition; site preparation (e.g., clearing, grading); building construction; paving; application of architectural coatings; on-road truck travel; and other miscellaneous

activities. For construction activity, DPM is the primary toxic air contaminant of concern. On-road diesel-powered haul trucks traveling to and from the construction area to deliver materials and equipment are less of a concern because they would not stay on the site for long durations. Diesel exhaust from construction equipment operating at the site poses a health risk to nearby sensitive receptors.

PM₁₀ exhaust construction emissions rates in grams per second were calculated from the total annual onsite exhaust emissions reported in CalEEMod during construction. Construction exhaust emissions over the entire construction period were used in AERMOD, a U.S. EPA-approved dispersion model, to approximate construction DPM emissions. AERMOD is a steady-state, multiple-source, Gaussian dispersion model designed for use with emission sources situated in terrain where ground elevations can exceed the stack heights of the emission sources. AERMOD requires hourly meteorological data consisting of wind vector, wind speed, temperature, stability class, and mixing height. Uniform Cartesian receptors were used to evaluate the locations of the maximally exposed sensitive receptors. Surface and upper air meteorological data from the Long Beach Airport Monitoring Station provided by the South Coast AQMD was selected as being the most representative meteorology. In addition, National Elevation Dataset (NED) terrain data was imported into AERMOD for the Project. The modeling and analysis were prepared in accordance with the South Coast AQMD Modeling Guidance for AERMOD.⁸

Risk levels were calculated based on the California OEHHA guidance document, *Air Toxics Hot Spots Program Risk Assessment Guidelines* (February 2015). South Coast AQMD's threshold for cancer risk is ten in-one-million and the acute or chronic noncancer hazard index is one. Projects that do not exceed these thresholds would not result in a significant impact.

The HRA determined that the off-site construction health risk without the incorporation of mitigation would result in a maximum cancer risk of 25.30 in one million, which would exceed the South Coast AQMD threshold of 10 in one million. The Project requires mitigation measure (MM) HRA-1, which requires the use of Tier 4 Final construction equipment. Implementation of MM HRA-1 would reduce construction cancer risk to 2.65 in one million. Acute and chronic impacts were also evaluated in the HRA. An acute or chronic hazard index of 1.0 is considered individually significant. The highest maximum chronic and acute hazard index at offsite receptors during construction would be 0.015 and 0.825, respectively, and would not exceed the chronic hazard index of 1.0. Construction risk levels would be below South Coast AQMD thresholds with implementation of MM HRA-1 and impacts would be less than significant. Refer to the Project HRA for analysis methodology, results, and model data.

Operational-Related Health Risk Analysis

As noted above, a Project HRA was prepared and evaluated impacts from project operations at surrounding sensitive receptors. As indicated in the HRA, operational-related cancer risk from the Project would be negligible (less than 0.10 in one million) and would not exceed South Coast AQMD threshold of 10 in one million. In addition, the highest maximum chronic and acute hazard index at offsite receptors during operations would be 0.000076 and 0.000508, respectively, and would not exceed the chronic hazard index of 1.0. Therefore, operational risk levels would be below South Coast AQMD thresholds and impacts would be less than significant.

Kimley»Horn

February 2023

South Coast Air Quality Management District, South Coast AQMD Modeling Guidance for AERMOD, http://www.aqmd.gov/home/air-quality/meteorological-data/modeling-guidance, accessed September 2022.

Mitigation Measures: Refer to MM HRA-1 in the *1450 Artesia Boulevard SP Project Health Risk Assessment.*

Level of Significance: Less than significant impact with MM HRA-1 incorporated.

Threshold 5.4 Would the Project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

The South Coast AQMD CEQA Air Quality Handbook identifies certain land uses as sources of odors. These land uses include agriculture (farming and livestock), wastewater treatment plants, food processing plants, chemical plants, composting facilities, refineries, landfills, dairies, and fiberglass molding. The Project would not include any of the land uses that have been identified by the South Coast AQMD as odor sources.

During construction-related activities, some odors (not substantial pollutant concentrations) that may be detected are those typical of construction vehicles (e.g., diesel exhaust from grading and construction equipment). These odors are a temporary short-term impact that is typical of construction projects and would disperse rapidly. The Project would not include any of the land uses that have been identified by the South Coast AQMD as odor sources. Therefore, the Project would not create objectionable odors.

Mitigation Measures: No mitigation is required.

Level of Significance: No impact.

6 REFERENCES

- 1. California Air Pollution Control Officers Association (CAPCOA), Health Effects, 2018.
- 2. California Air Pollution Control Officers Association (CAPCOA), *Health Risk Assessments for Proposed Land Use Projects*, 2009.
- 3. California Air Resources Board, *Aerometric Data Analysis and Measurement System (ADAM) Top Four Summaries from 2018 to 2019*, 2020.
- 4. California Air Resources Board, *Air Quality and Land Use Handbook: A Community Health Perspective*, 2005.
- 5. California Air Resources Board, Current Air Quality Standards, 2016.
- 6. California Air Resources Board, *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles*, 2000.
- 7. City of Gardena, City of Gardena General Plan, 2021.
- 8. City of Gardena, Code of Ordinances, 2022.
- 9. Federal Highway Administration, *Interim Guidance on Mobile Source Air Toxic Analysis in NEPA Documents*, 2016.
- 10. Kimley-Horn and Associates, Civil Site Plan, March 25, 2022.
- 11. Kimley-Horn and Associates, 1450 Artesia Boulevard SP Project Health Risk Assessment, October 2022.
- 12. Kimley-Horn and Associates, 1450 Artesia Blvd SP Special Events Trip Generation Analysis Memorandum, October 2022.
- 13. Office of Environmental Health Hazard Assessment, *Air Toxics Hot Spots Program Risk Assessment Guidelines*, 2015.
- 14. Ralph Propper, Patrick Wong, Son Bui, Jeff Austin, William Vance, Alvaro Alvarado, Bart Croes, and Dongmin Luo, Ambient and Emission Trends of Toxic Air Contaminants in California. American Chemical Society: Environmental Science & Technology, 2015.
- 15. Southern California Association of Governments, 2020 2045 Regional Transportation Plan/Sustainable Communities Strategy, 2020.
- 16. South Coast Air Quality Management District, 2016 Air Quality Management Plan, March 2017.
- 17. South Coast Air Quality Management District, 2022 Air Quality Management Plan, December 2022.
- 18. South Coast Air Quality Management District, CEQA Air Quality Handbook, 1993.
- 19. South Coast Air Quality Management District, Localized Significance Threshold Methodology, 2009.
- 20. South Coast Air Quality Management District, South Coast AQMD Modeling Guidance for AERMOD, http://www.aqmd.gov/home/air-quality/meteorological-data/modeling-guidance, accessed September 2022.
- 21. South Coast Air Quality Management District, The Multiple Air Toxics Exposure Study IV, 2015.
- 22. United States Environmental Protection Agency, National Ambient Air Quality Standards Table, 2016.
- 23. United States Environmental Protection Agency, Nonattainment Areas for Criteria Pollutants, 2019.
- 24. United States Environmental Protection Agency, *Policy Assessment for the Review of the Lead National Ambient Air Quality Standards*, 2013.

February 2023

Appendix A

Air Quality Modeling Data

1450 Artesia_Existing Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2021) Unmitigated
 - 3.3. Site Preparation (2021) Unmitigated
 - 3.5. Grading (2021) Unmitigated
 - 3.7. Building Construction (2021) Unmitigated

- 3.9. Building Construction (2022) Unmitigated
- 3.11. Paving (2022) Unmitigated
- 3.13. Architectural Coating (2022) Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated

- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles

- 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption

- 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration

5.18.2.1. Unmitigated

- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	1450 Artesia_Existing
Construction Start Date	1/01/2021
Operational Year	2022
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.20
Precipitation (days)	17.4
Location	1450 Artesia Blvd, Gardena, CA 90248, USA
County	Los Angeles-South Coast
City	Gardena
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	4626
EDFZ	7
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.17

1.2. Land Use Types

L	and Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq	Special Landscape	Population	Description
						ft)	Area (sq ft)		

General Office Building	6.03	1000sqft	0.14	6,030	0.00	_	_	_
General Light Industry	6.03	1000sqft	0.14	6,030	0.00	_	_	_
Parking Lot	5.78	Space	0.05	0.00	0.00	_	_	_
Other Asphalt Surfaces	30.0	Acre	30.0	0.00	0.00	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.89	1.58	15.0	14.6	0.02	0.78	0.08	0.86	0.72	0.02	0.74	_	2,529	2,529	0.10	0.03	0.50	2,541
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	10.6	24.0	92.5	74.8	0.11	4.17	29.4	33.5	3.83	13.9	17.7	_	12,410	12,410	0.51	0.11	0.07	12,457
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.90	1.66	15.5	14.0	0.02	0.76	1.72	2.48	0.70	0.80	1.50	_	2,353	2,353	0.10	0.03	0.22	2,364
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.35	0.30	2.84	2.56	< 0.005	0.14	0.31	0.45	0.13	0.15	0.27	_	390	390	0.02	< 0.005	0.04	391

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2021	1.89	1.58	15.0	14.6	0.02	0.78	0.08	0.86	0.72	0.02	0.74	_	2,529	2,529	0.10	0.03	0.50	2,541
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2021	10.6	8.95	92.5	74.8	0.11	4.17	29.4	33.5	3.83	13.9	17.7	_	12,410	12,410	0.51	0.11	0.07	12,457
2022	1.68	24.0	13.2	13.9	0.02	0.65	0.20	0.73	0.60	0.05	0.62	_	2,525	2,525	0.10	0.03	0.03	2,537
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2021	1.90	1.59	15.5	14.0	0.02	0.76	1.72	2.48	0.70	0.80	1.50	_	2,353	2,353	0.10	0.03	0.22	2,364
2022	0.17	1.66	1.22	1.42	< 0.005	0.06	0.02	0.08	0.06	< 0.005	0.06	_	236	236	0.01	< 0.005	0.04	237
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2021	0.35	0.29	2.84	2.56	< 0.005	0.14	0.31	0.45	0.13	0.15	0.27	_	390	390	0.02	< 0.005	0.04	391
2022	0.03	0.30	0.22	0.26	< 0.005	0.01	< 0.005	0.01	0.01	< 0.005	0.01	_	39.1	39.1	< 0.005	< 0.005	0.01	39.2

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.51	0.95	0.44	4.02	0.01	0.01	0.58	0.60	0.01	0.15	0.16	11.8	1,107	1,119	1.25	0.04	4.78	1,168
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unmit.	0.41	0.86	0.47	3.21	0.01	0.01	0.58	0.60	0.01	0.15	0.16	11.8	1,074	1,086	1.26	0.04	1.67	1,132
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.40	0.84	0.41	3.04	0.01	0.01	0.47	0.48	0.01	0.12	0.13	11.8	953	965	1.25	0.04	2.70	1,010
Annual (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Unmit.	0.07	0.15	0.07	0.56	< 0.005	< 0.005	0.09	0.09	< 0.005	0.02	0.02	1.95	158	160	0.21	0.01	0.45	167

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.40	0.36	0.33	3.41	0.01	< 0.005	0.58	0.59	< 0.005	0.15	0.15	_	705	705	0.04	0.03	3.19	718
Area	0.09	0.58	< 0.005	0.52	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.16	2.16	< 0.005	< 0.005	_	2.16
Energy	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	376	376	0.03	< 0.005	_	377
Water	_	_	_	_	_	_	_	_	_	_	_	4.73	24.5	29.2	0.49	0.01	_	44.8
Waste	_	_	_	_	_	_	_	_	_	_	_	7.05	0.00	7.05	0.70	0.00	_	24.7
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.58	1.58
Total	0.51	0.95	0.44	4.02	0.01	0.01	0.58	0.60	0.01	0.15	0.16	11.8	1,107	1,119	1.25	0.04	4.78	1,168
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.40	0.36	0.36	3.12	0.01	< 0.005	0.58	0.59	< 0.005	0.15	0.15	_	674	674	0.04	0.03	0.08	685
Area	_	0.49	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	376	376	0.03	< 0.005	_	377
Water	_	_	_	_	_	_	_	_	_	_	_	4.73	24.5	29.2	0.49	0.01	_	44.8
Waste	_	_	_	_	_	_	_	_	_	_	_	7.05	0.00	7.05	0.70	0.00	_	24.7

Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.58	1.58
Total	0.41	0.86	0.47	3.21	0.01	0.01	0.58	0.60	0.01	0.15	0.16	11.8	1,074	1,086	1.26	0.04	1.67	1,132
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.32	0.29	0.29	2.59	0.01	< 0.005	0.47	0.47	< 0.005	0.12	0.12	_	552	552	0.03	0.02	1.11	561
Area	0.06	0.55	< 0.005	0.36	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.48	1.48	< 0.005	< 0.005	_	1.48
Energy	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	376	376	0.03	< 0.005	_	377
Water	_	_	_	_	_	_	_	_	_	_	_	4.73	24.5	29.2	0.49	0.01	_	44.8
Waste	_	_	_	_	_	_	_	_	_	_	_	7.05	0.00	7.05	0.70	0.00	_	24.7
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.58	1.58
Total	0.40	0.84	0.41	3.04	0.01	0.01	0.47	0.48	0.01	0.12	0.13	11.8	953	965	1.25	0.04	2.70	1,010
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.06	0.05	0.05	0.47	< 0.005	< 0.005	0.09	0.09	< 0.005	0.02	0.02	_	91.4	91.4	0.01	< 0.005	0.18	92.9
Area	0.01	0.10	< 0.005	0.07	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.24	0.24	< 0.005	< 0.005	_	0.25
Energy	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	62.2	62.2	< 0.005	< 0.005	_	62.4
Water	_	_	_	_	_	_	_	_	_	_	_	0.78	4.05	4.83	0.08	< 0.005	_	7.42
Waste	_	_	_	_	_	_	_	_	_	_	_	1.17	0.00	1.17	0.12	0.00	_	4.08
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.26	0.26
Total	0.07	0.15	0.07	0.56	< 0.005	< 0.005	0.09	0.09	< 0.005	0.02	0.02	1.95	158	160	0.21	0.01	0.45	167

3. Construction Emissions Details

3.1. Demolition (2021) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		3.18	31.1	25.1	0.03	1.41	_	1.41	1.30	_	1.30	_	3,420	3,420	0.14	0.03	_	3,431
Demolitio n	_	_	_	-	_	_	0.00	0.00	_	0.00	0.00	_	-	_	-	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	-	_	_	_	_	_	_	_	_	-	_	-	_	_	_
Off-Road Equipment		0.17	1.70	1.37	< 0.005	0.08	_	0.08	0.07	_	0.07	_	187	187	0.01	< 0.005	_	188
Demolitio n	_	_	_	-	_	_	0.00	0.00	_	0.00	0.00	_	-	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		0.03	0.31	0.25	< 0.005	0.01	_	0.01	0.01	_	0.01	_	31.0	31.0	< 0.005	< 0.005	_	31.1
Demolitio n	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	-	_	-	_	_	-	_	-	_	_	_	_	_	_	_	_	_

Worker	0.10	0.08	0.11	1.24	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	213	213	0.01	0.01	0.03	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Worker	0.01	< 0.005	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	11.9	11.9	< 0.005	< 0.005	0.03	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.97	1.97	< 0.005	< 0.005	< 0.005	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	<u> </u>	0.00	0.00	0.00	0.00	0.00	_

3.3. Site Preparation (2021) - Unmitigated

Location	TOG	ROG		СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.39	46.1	37.6	0.05	2.14	_	2.14	1.97	_	1.97	_	5,286	5,286	0.21	0.04	_	5,304
Dust From Material Movemen	<u> </u>	_	_	_	_	_	19.7	19.7	_	10.1	10.1	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-
Off-Road Equipmen		0.25	2.65	2.16	< 0.005	0.12	_	0.12	0.11	-	0.11	_	304	304	0.01	< 0.005	_	305
Dust From Material Movemen:	_	-	-	_	_	_	1.13	1.13	_	0.58	0.58	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.05	0.48	0.39	< 0.005	0.02	_	0.02	0.02	_	0.02	_	50.3	50.3	< 0.005	< 0.005	_	50.5
Dust From Material Movemen:	_	-	-	_	_	_	0.21	0.21	_	0.11	0.11	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	-	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Worker	0.11	0.10	0.13	1.44	0.00	0.00	0.23	0.23	0.00	0.05	0.05	_	249	249	0.01	0.01	0.03	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	0.01	0.01	0.01	0.09	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	14.5	14.5	< 0.005	< 0.005	0.03	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.41	2.41	< 0.005	< 0.005	0.01	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

3.5. Grading (2021) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.36	46.1	34.1	0.06	2.02	_	2.02	1.86	_	1.86	_	6,591	6,591	0.27	0.05	_	6,613
Dust From Material Movemen	<u> </u>	_	_	_	_	_	9.20	9.20	_	3.65	3.65	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.24	2.53	1.87	< 0.005	0.11	_	0.11	0.10	_	0.10	_	361	361	0.01	< 0.005	_	362
Dust From Material Movemen	_	_	_	_	_	_	0.50	0.50	_	0.20	0.20	_	_	_	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.04	0.46	0.34	< 0.005	0.02	_	0.02	0.02	_	0.02	_	59.8	59.8	< 0.005	< 0.005	_	60.0
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.09	0.09	_	0.04	0.04	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	-	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Worker	0.13	0.11	0.15	1.65	0.00	0.00	0.26	0.26	0.00	0.06	0.06	_	285	285	0.01	0.01	0.04	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.09	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	15.8	15.8	< 0.005	< 0.005	0.03	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.62	2.62	< 0.005	< 0.005	0.01	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

3.7. Building Construction (2021) - Unmitigated

Location	TOG	ROG	NOx	СО	so2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.55	14.8	14.1	0.02	0.78	_	0.78	0.72	_	0.72	_	2,396	2,396	0.10	0.02	_	2,404
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Off-Road Equipmen		1.55	14.8	14.1	0.02	0.78	_	0.78	0.72	_	0.72	_	2,396	2,396	0.10	0.02	_	2,404
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.89	8.56	8.13	0.01	0.45	_	0.45	0.42	_	0.42	_	1,383	1,383	0.06	0.01	_	1,388
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_
Off-Road Equipmen		0.16	1.56	1.48	< 0.005	0.08	_	0.08	0.08	_	0.08	_	229	229	0.01	< 0.005	_	230
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.03	0.43	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	67.1	67.1	< 0.005	< 0.005	0.33	_
Vendor	0.01	< 0.005	0.11	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	66.2	66.2	< 0.005	0.01	0.17	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.03	0.37	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	63.5	63.5	< 0.005	< 0.005	0.01	_
Vendor	0.01	< 0.005	0.12	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	66.2	66.2	< 0.005	0.01	< 0.005	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Worker	0.02	0.01	0.02	0.22	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	37.2	37.2	< 0.005	< 0.005	0.08	_
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	38.2	38.2	< 0.005	0.01	0.04	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	6.16	6.16	< 0.005	< 0.005	0.01	_
Vendor	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.33	6.33	< 0.005	< 0.005	0.01	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

3.9. Building Construction (2022) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	<u> </u>	_	<u> </u>	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Off-Road Equipmen		1.38	13.1	13.6	0.02	0.65	_	0.65	0.60	_	0.60	_	2,397	2,397	0.10	0.02	_	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	-
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Off-Road Equipmen		0.07	0.69	0.72	< 0.005	0.03	_	0.03	0.03	_	0.03	_	127	127	0.01	< 0.005	_	127
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.13	0.13	< 0.005	0.01	_	0.01	0.01	_	0.01	_	21.0	21.0	< 0.005	< 0.005	_	21.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	-
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.03	0.34	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	62.3	62.3	< 0.005	< 0.005	0.01	_
Vendor	0.01	< 0.005	0.10	0.04	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	65.5	65.5	< 0.005	0.01	< 0.005	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.34	3.34	< 0.005	< 0.005	0.01	_
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	3.46	3.46	< 0.005	< 0.005	< 0.005	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.55	0.55	< 0.005	< 0.005	< 0.005	_
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.57	0.57	< 0.005	< 0.005	< 0.005	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

3.11. Paving (2022) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		0.94	8.46	10.1	0.01	0.46	_	0.46	0.43	_	0.43	_	1,511	1,511	0.06	0.01	_	1,517
Paving	_	3.94	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	-
Average Daily	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	-
Off-Road Equipment		0.05	0.46	0.55	< 0.005	0.03	_	0.03	0.02	_	0.02	_	82.8	82.8	< 0.005	< 0.005	_	83.1
Paving	_	0.22	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	-
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		0.01	0.08	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.7	13.7	< 0.005	< 0.005	_	13.8
Paving	_	0.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.09	0.08	0.10	1.14	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	209	209	0.01	0.01	0.03	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	11.6	11.6	< 0.005	< 0.005	0.02	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.93	1.93	< 0.005	< 0.005	< 0.005	_
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

3.13. Architectural Coating (2022) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road(Equipment		0.16	0.96	1.17	< 0.005	0.04	_	0.04	0.04	_	0.04	_	134	134	0.01	< 0.005	_	134
Architect - ural Coatings	_	23.8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Onsite (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average - Daily	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road (Equipment		0.01	0.05	0.06	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	7.32	7.32	< 0.005	< 0.005	_	7.34
Architect - ural Coatings	_	1.30	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Onsite (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual -	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road <		< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.21	1.21	< 0.005	< 0.005	_	1.22
Architect - ural Coatings	_	0.24	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Offsite -	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
			_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_
Daily, - Winter (Max)																		

Vendor 0.00 Hauling 0.00 Average —	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Average —	0.00	0.00	0.00	0.00								0.00	0.00	0.00	0.00	0.00	
-	_			0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Daily		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker < 0.005	5 < 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.69	0.69	< 0.005	< 0.005	< 0.005	_
Vendor 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Annual —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker < 0.005	5 < 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.11	0.11	< 0.005	< 0.005	< 0.005	_
Vendor 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_
Hauling 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	_

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

		,	,	<i>y</i> , <i>y</i> .		,	(J. J. J. J.	· <i>J</i>	,							
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	0.27	0.24	0.22	2.25	< 0.005	< 0.005	0.39	0.39	< 0.005	0.10	0.10	_	466	466	0.02	0.02	2.11	474
General Light Industry	0.14	0.12	0.11	1.16	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	_	239	239	0.01	0.01	1.08	243
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.40	0.36	0.33	3.41	0.01	< 0.005	0.58	0.59	< 0.005	0.15	0.15	_	705	705	0.04	0.03	3.19	718
Daily, Winter (Max)	_	-	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_
General Office Building	0.26	0.24	0.24	2.06	< 0.005	< 0.005	0.39	0.39	< 0.005	0.10	0.10	_	446	446	0.03	0.02	0.05	452
General Light Industry	0.13	0.12	0.12	1.06	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	_	229	229	0.01	0.01	0.03	232
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.40	0.36	0.36	3.12	0.01	< 0.005	0.58	0.59	< 0.005	0.15	0.15	_	674	674	0.04	0.03	0.08	685
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	0.04	0.03	0.03	0.29	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.01	_	56.5	56.5	< 0.005	< 0.005	0.11	57.5
General Light Industry	0.02	0.02	0.02	0.18	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	34.8	34.8	< 0.005	< 0.005	0.07	35.4
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.06	0.05	0.05	0.47	< 0.005	< 0.005	0.09	0.09	< 0.005	0.02	0.02	_	91.4	91.4	0.01	< 0.005	0.18	92.9

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land	TOG	ROG	NOx	СО	SO2	ual) and	PM10D	PM10T	PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Jse						1 11102			W2.52	1 1112.03	1		113332	0021		1.20	<u> </u> ``	0020
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	157	157	0.01	< 0.005	_	157
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	_	84.3	84.3	0.01	< 0.005	_	84.6
Parking Lot	_	_	_	-	_	_	_	-	_	_	_	_	2.89	2.89	< 0.005	< 0.005	-	2.90
Other Asphalt Surfaces	_	_	-	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	244	244	0.02	< 0.005	_	245
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	-	_	_	_	_	_	_	_	_	_	157	157	0.01	< 0.005	-	157
General Light Industry	_	_	-	_	_	_	_	_	_	_	_	_	84.3	84.3	0.01	< 0.005	_	84.6
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	-	2.89	2.89	< 0.005	< 0.005	-	2.90
Other Asphalt Surfaces	_	_	_	_	_	_	-	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	244	244	0.02	< 0.005	_	245

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	25.9	25.9	< 0.005	< 0.005	_	26.0
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	_	14.0	14.0	< 0.005	< 0.005	_	14.0
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	0.48	0.48	< 0.005	< 0.005	_	0.48
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	40.4	40.4	< 0.005	< 0.005	_	40.5

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	< 0.005	< 0.005	0.04	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	49.0	49.0	< 0.005	< 0.005	_	49.1
General Light Industry	0.01	< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	82.7	82.7	0.01	< 0.005	_	82.9
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	132	132	0.01	< 0.005	_	132

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	< 0.005	< 0.005	0.04	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	49.0	49.0	< 0.005	< 0.005	_	49.1
General Light Industry	0.01	< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	82.7	82.7	0.01	< 0.005	_	82.9
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	132	132	0.01	< 0.005	_	132
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	_	8.11	8.11	< 0.005	< 0.005	_	8.13
General Light Industry	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	_	13.7	13.7	< 0.005	< 0.005	_	13.7
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	21.8	21.8	< 0.005	< 0.005	_	21.9

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_
Consum er Products	_	0.36	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.09	0.09	< 0.005	0.52	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.16	2.16	< 0.005	< 0.005	_	2.16
Total	0.09	0.58	< 0.005	0.52	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.16	2.16	< 0.005	< 0.005	_	2.16
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	0.36	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	0.49	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	0.07	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.01	0.01	< 0.005	0.07	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.24	0.24	< 0.005	< 0.005	_	0.25

Total	0.01	0.10	< 0.005	0.07	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.24	0.24	< 0.005	< 0.005	_	0.25

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Ontona	i Ollatai	its (ib/ue	iy ioi aai	iy, toinyi	ioi aiiii	adi) dila	01103 (1	Drady 101	daily, iv	117 y 1 101	ariiiaaij							
Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	2.05	10.6	12.7	0.21	0.01	_	19.5
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	2.67	13.8	16.5	0.27	0.01	_	25.3
Parking Lot	_	_	_	_	_	_	_	_		_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	4.73	24.5	29.2	0.49	0.01	_	44.8
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	2.05	10.6	12.7	0.21	0.01	_	19.5
General Light Industry	_	_	_	_		_	_	_	_	_	_	2.67	13.8	16.5	0.27	0.01	_	25.3
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	4.73	24.5	29.2	0.49	0.01	_	44.8
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.34	1.76	2.10	0.03	< 0.005	_	3.23
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	0.44	2.29	2.73	0.05	< 0.005	_	4.20
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.78	4.05	4.83	0.08	< 0.005	_	7.42

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	3.02	0.00	3.02	0.30	0.00		10.6
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	4.03	0.00	4.03	0.40	0.00	_	14.1

Parking	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Lot																		
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	-	_	_	_	7.05	0.00	7.05	0.70	0.00	_	24.7
Daily, Winter (Max)	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_		_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	3.02	0.00	3.02	0.30	0.00	_	10.6
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	4.03	0.00	4.03	0.40	0.00	_	14.1
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	7.05	0.00	7.05	0.70	0.00	_	24.7
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.50	0.00	0.50	0.05	0.00	_	1.75
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	0.67	0.00	0.67	0.07	0.00	_	2.33
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_		_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	1.17	0.00	1.17	0.12	0.00	_	4.08

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria	Polluta	ints (lb/d	ay for da	aily, ton/	yr for an	nual) and	GHGs (lb/day fo										
Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	_	-	-	_	_	_	_	_	_	-	_	_	_	_	-	_	_
General Office Building	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	0.01	0.01
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.57	1.57
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.58	1.58
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.01	0.01
General Light Industry	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	1.57	1.57
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.58	1.58
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005
General Light Industry	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.26	0.26
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.26	0.26

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme nt Type	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_

Total	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	<u> </u>	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type		ROG				PM10E				PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со		PM10E				PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest — ered	-	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, — Winter (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest — ered	-	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove —	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest — ered	-	_	_	_	_	_		_		_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal —	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	1/1/2021	1/28/2021	5.00	20.0	_
Site Preparation	Site Preparation	1/29/2021	2/26/2021	5.00	21.0	_
Grading	Grading	2/12/2021	3/11/2021	5.00	20.0	_
Building Construction	Building Construction	3/12/2021	1/27/2022	5.00	230	_
Paving	Paving	1/28/2022	2/24/2022	5.00	20.0	_
Architectural Coating	Architectural Coating	2/25/2022	3/24/2022	5.00	20.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Demolition	Excavators	Diesel	Average	3.00	8.00	36.0	0.38
Demolition	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48
Grading	Tractors/Loaders/Backh oes	Diesel	Average	2.00	8.00	84.0	0.37

Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	_	_	_	_
Demolition	Worker	15.0	18.5	LDA,LDT1,LDT2
Demolition	Vendor	_	10.2	HHDT,MHDT
Demolition	Hauling	0.00	20.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Site Preparation	_	_	_	_
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	_	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT

Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	4.46	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	1.98	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	0.89	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	18,090	6,030	78,544

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	_	_
Site Preparation	_	_	31.5	0.00	_
Grading	_	_	60.0	0.00	_
Paving	0.00	0.00	0.00	0.00	30.1

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Office Building	0.00	0%
General Light Industry	0.00	0%
Parking Lot	0.05	100%
Other Asphalt Surfaces	30.0	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2021	0.00	532	0.03	< 0.005
2022	0.00	532	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
General Office Building	58.7	13.3	4.22	16,227	545	124	39.1	150,456
General Light Industry	29.9	12.0	30.2	9,995	277	111	280	92,676
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	18,090	6,030	78,544

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
General Office Building	107,456	532	0.0330	0.0040	152,839
General Light Industry	57,844	532	0.0330	0.0040	258,096
Parking Lot	1,985	532	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
General Office Building	1,071,735	0.00
General Light Industry	1,394,438	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
General Office Building	5.61	_
General Light Industry	7.48	_
Parking Lot	0.00	_
Other Asphalt Surfaces	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
General Office Building	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
General Light Industry	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment type I doi type Engine not I tumber per buy I toure to buy I toure to buy I toure to buy		Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
--	--	----------------	-----------	-------------	----------------	---------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
Equipment Type	1 doi 1990	Trumbor por Bay	Troute per Buy	riodio por iodi	1 lordopowor	Loud I doloi

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
	· · · · · · · · · · · · · · · · ·				(

5.17. User Defined

Equipment Type	Fuel Tree
Equipment Type	Fuel Type
	1

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	5.08	annual days of extreme heat
Extreme Precipitation	4.20	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A

Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	24.9
AQ-PM	81.4
AQ-DPM	78.2
Drinking Water	69.1
Lead Risk Housing	45.4
Pesticides	38.0
Toxic Releases	99.2
Traffic	68.5
Effect Indicators	_

89.0
87.3
67.0
96.3
91.0
_
67.8
66.2
77.0
_
31.4
16.3
76.6
33.2
2.73

7.2. Healthy Places Index Scores

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	74.48992686
Employed	96.16322341
Median HI	44.11651482
Education	_
Bachelor's or higher	57.65430515
High school enrollment	100
Preschool enrollment	51.48209932

Transportation	_
Auto Access	65.16104196
Active commuting	20.26177339
Social	
2-parent households	79.14795329
Voting	26.57513153
Neighborhood	_
Alcohol availability	33.14513025
Park access	45.65635827
Retail density	75.59348133
Supermarket access	71.26908764
Tree canopy	22.73835493
Housing	
Homeownership	72.97574747
Housing habitability	93.10920056
Low-inc homeowner severe housing cost burden	82.1891441
Low-inc renter severe housing cost burden	91.4282048
Uncrowded housing	62.10701912
Health Outcomes	_
Insured adults	45.18157321
Arthritis	0.0
Asthma ER Admissions	22.9
High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0

0.0
84.1
95.5
41.1
23.3
0.0
0.0
0.0
67.2
0.0
0.0
_
0.0
0.0
0.0
_
0.0
0.0
62.5
6.3
13.2
90.3
64.2
9.7
57.1
56.5

Other Indices	
Hardship	41.8
Other Decision Support	_
2016 Voting	15.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	83.0
Healthy Places Index Score for Project Location (b)	67.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Based on previous run default construction schedule.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

1450 Artesia Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
 - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2024) Unmitigated
 - 3.2. Demolition (2024) Mitigated

- 3.3. Site Preparation (2024) Unmitigated
- 3.4. Site Preparation (2024) Mitigated
- 3.5. Grading (2024) Unmitigated
- 3.6. Grading (2024) Mitigated
- 3.7. Building Construction (2025) Unmitigated
- 3.8. Building Construction (2025) Mitigated
- 3.9. Paving (2025) Unmitigated
- 3.10. Paving (2025) Mitigated
- 3.11. Architectural Coating (2025) Unmitigated
- 3.12. Architectural Coating (2025) Mitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.1.2. Mitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.2. Electricity Emissions By Land Use Mitigated

- 4.2.3. Natural Gas Emissions By Land Use Unmitigated
- 4.2.4. Natural Gas Emissions By Land Use Mitigated
- 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.3.2. Mitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.4.2. Mitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.5.2. Mitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.6.2. Mitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
 - 4.7.2. Mitigated

- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
 - 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
 - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated

- 5.2.2. Mitigated
- 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.9.2. Mitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths

- 5.10.1.1. Unmitigated
- 5.10.1.2. Mitigated
- 5.10.2. Architectural Coatings
- 5.10.3. Landscape Equipment
- 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.12.2. Mitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.13.2. Mitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.14.2. Mitigated

- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
 - 5.15.2. Mitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
 - 5.18.2.2. Mitigated

- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	1450 Artesia
Construction Start Date	6/1/2024
Operational Year	2026
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.20
Precipitation (days)	17.4
Location	33.87216176389781, -118.3005279056033
County	Los Angeles-South Coast
City	Gardena
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	4626
EDFZ	7
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.22

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq	Special Landscape	Population	Description
					ft)	Area (sq ft)		

Unrefrigerated Warehouse-No Rail	72.0	1000sqft	0.00	72,000	0.00	_	_	Industrial Warehouse
General Office Building	10.0	1000sqft	0.00	10,000	0.00	_	_	_
Parking Lot	4.88	Acre	4.88	0.00	78,076	_	_	_
Industrial Park	186	1000sqft	0.00	186,000	0.00	_	_	Self Storage

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-10-A	Water Exposed Surfaces
Construction	C-11	Limit Vehicle Speeds on Unpaved Roads
Construction	C-13	Use Low-VOC Paints for Construction

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.43	3.72	36.0	34.2	0.05	1.60	2.09	3.17	1.47	0.39	1.53	_	5,543	5,543	0.24	0.32	5.50	5,565
Mit.	4.43	3.72	36.0	34.2	0.05	1.60	2.09	3.17	1.47	0.39	1.53	_	5,543	5,543	0.24	0.32	5.50	5,565
% Reduced	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_		_	_	_	_	_	_	_	_	_	_	_	_		_	_
Unmit.	2.33	40.7	18.3	19.8	0.03	0.84	1.16	1.63	0.77	0.29	0.82	_	4,617	4,617	0.19	0.23	0.17	4,691

Mit.	2.33	21.6	18.3	19.8	0.03	0.84	1.16	1.63	0.77	0.29	0.82	_	4,617	4,617	0.19	0.23	0.17	4,691
% Reduced	_	47%	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Average Daily (Max)	_	_	_	_	_	_		_	-	-	-	_	_	_	_	-	_	_
Unmit.	1.24	7.89	9.98	10.8	0.02	0.43	0.58	0.87	0.39	0.14	0.47	-	2,686	2,686	0.11	0.13	1.54	2,730
Mit.	1.24	4.49	9.98	10.8	0.02	0.43	0.58	0.87	0.39	0.14	0.47	-	2,686	2,686	0.11	0.13	1.54	2,730
% Reduced	_	43%	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.23	1.44	1.82	1.97	< 0.005	0.08	0.11	0.16	0.07	0.03	0.09	-	445	445	0.02	0.02	0.25	452
Mit.	0.23	0.82	1.82	1.97	< 0.005	0.08	0.11	0.16	0.07	0.03	0.09	_	445	445	0.02	0.02	0.25	452
% Reduced	_	43%	_	_	_	-	_	_	_	_	_	-	_	_	-	_	_	_

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
2024	4.43	3.72	36.0	34.2	0.05	1.60	2.09	3.17	1.47	0.39	1.53	_	5,543	5,543	0.24	0.32	4.90	5,565
2025	1.63	1.34	12.1	16.5	0.03	0.45	0.87	1.31	0.41	0.22	0.62	_	4,220	4,220	0.17	0.22	5.50	4,294
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2024	2.33	1.96	18.3	19.8	0.03	0.84	0.20	1.03	0.77	0.05	0.82	_	3,159	3,159	0.13	0.03	0.02	3,172
2025	1.89	40.7	13.1	18.6	0.03	0.48	1.16	1.63	0.43	0.29	0.72	_	4,617	4,617	0.19	0.23	0.17	4,691

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2024	1.24	1.03	9.98	9.48	0.02	0.43	0.42	0.84	0.39	0.08	0.47	_	1,808	1,808	0.08	0.06	0.46	1,829
2025	1.08	7.89	7.86	10.8	0.02	0.29	0.58	0.87	0.26	0.14	0.41	_	2,686	2,686	0.11	0.13	1.54	2,730
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2024	0.23	0.19	1.82	1.73	< 0.005	0.08	0.08	0.15	0.07	0.01	0.09	_	299	299	0.01	0.01	0.08	303
2025	0.20	1.44	1.43	1.97	< 0.005	0.05	0.11	0.16	0.05	0.03	0.07	_	445	445	0.02	0.02	0.25	452

2.3. Construction Emissions by Year, Mitigated

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	-	_	_	_	_	_	-	-	_	_	_	-	-	_	-
2024	4.43	3.72	36.0	34.2	0.05	1.60	2.09	3.17	1.47	0.39	1.53	_	5,543	5,543	0.24	0.32	4.90	5,565
2025	1.63	1.34	12.1	16.5	0.03	0.45	0.87	1.31	0.41	0.22	0.62	_	4,220	4,220	0.17	0.22	5.50	4,294
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2024	2.33	1.96	18.3	19.8	0.03	0.84	0.20	1.03	0.77	0.05	0.82	_	3,159	3,159	0.13	0.03	0.02	3,172
2025	1.89	21.6	13.1	18.6	0.03	0.48	1.16	1.63	0.43	0.29	0.72	_	4,617	4,617	0.19	0.23	0.17	4,691
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2024	1.24	1.03	9.98	9.48	0.02	0.43	0.42	0.84	0.39	0.08	0.47	_	1,808	1,808	0.08	0.06	0.46	1,829
2025	1.08	4.49	7.86	10.8	0.02	0.29	0.58	0.87	0.26	0.14	0.41	_	2,686	2,686	0.11	0.13	1.54	2,730
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2024	0.23	0.19	1.82	1.73	< 0.005	0.08	0.08	0.15	0.07	0.01	0.09	_	299	299	0.01	0.01	0.08	303
2025	0.20	0.82	1.43	1.97	< 0.005	0.05	0.11	0.16	0.05	0.03	0.07	_	445	445	0.02	0.02	0.25	452

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

			_	<i>y</i> . <i>y</i>														
Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	5.96	11.6	9.98	42.2	0.13	0.28	8.37	8.65	0.27	2.17	2.44	284	21,296	21,580	29.7	1.42	49.9	22,794
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	3.85	9.68	10.3	28.4	0.13	0.26	8.37	8.63	0.26	2.17	2.43	284	20,983	21,267	29.7	1.43	1.32	22,437
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	5.25	11.0	10.5	37.1	0.13	0.28	8.28	8.56	0.27	2.15	2.41	284	21,087	21,371	29.7	1.43	21.6	22,562
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.96	2.00	1.92	6.76	0.02	0.05	1.51	1.56	0.05	0.39	0.44	46.9	3,491	3,538	4.92	0.24	3.57	3,735

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	3.70	3.18	8.18	29.1	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,740	12,740	0.48	1.08	49.9	13,123
Area	2.07	8.36	0.10	11.7	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.9	47.9	< 0.005	< 0.005	_	48.1
Energy	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	7,890	7,890	0.54	0.05	_	7,918
Water	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Waste	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580

Refrig.	_	_		_	_	_	_		_	_	_	_	_			_	0.02	0.02
Total	5.96	11.6	9.98	42.2	0.13	0.28	8.37	8.65	0.27	2.17	2.44	284	21,296	21,580	29.7	1.42	49.9	22,794
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	3.66	3.14	8.63	27.0	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,475	12,475	0.49	1.09	1.29	12,814
Area	_	6.45	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	7,890	7,890	0.54	0.05	_	7,918
Water	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Waste	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	3.85	9.68	10.3	28.4	0.13	0.26	8.37	8.63	0.26	2.17	2.43	284	20,983	21,267	29.7	1.43	1.32	22,437
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	3.64	3.12	8.75	27.6	0.12	0.13	8.28	8.41	0.13	2.15	2.27	_	12,546	12,546	0.49	1.09	21.5	12,906
Area	1.42	7.76	0.07	7.98	< 0.005	0.01	_	0.01	0.01	_	0.01	_	32.8	32.8	< 0.005	< 0.005	_	32.9
Energy	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	7,890	7,890	0.54	0.05	_	7,918
Water	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Waste	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	5.25	11.0	10.5	37.1	0.13	0.28	8.28	8.56	0.27	2.15	2.41	284	21,087	21,371	29.7	1.43	21.6	22,562
Annual	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.66	0.57	1.60	5.04	0.02	0.02	1.51	1.54	0.02	0.39	0.42	_	2,077	2,077	0.08	0.18	3.57	2,137
Area	0.26	1.42	0.01	1.46	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.45
Energy	0.03	0.02	0.31	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	_	1,306	1,306	0.09	0.01	_	1,311
Water	_	_	_	_	_	_	_	_	_	_	_	19.5	102	122	2.01	0.05	_	186
Waste	_	_	_	_	_	_	_	_	_	_	_	27.4	0.00	27.4	2.74	0.00	_	96.0
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005
Total	0.96	2.00	1.92	6.76	0.02	0.05	1.51	1.56	0.05	0.39	0.44	46.9	3,491	3,538	4.92	0.24	3.57	3,735

2.6. Operations Emissions by Sector, Mitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	3.70	3.18	8.18	29.1	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,740	12,740	0.48	1.08	49.9	13,123
Area	2.07	8.36	0.10	11.7	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.9	47.9	< 0.005	< 0.005	_	48.1
Energy	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	7,890	7,890	0.54	0.05	_	7,918
Water	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Waste	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	5.96	11.6	9.98	42.2	0.13	0.28	8.37	8.65	0.27	2.17	2.44	284	21,296	21,580	29.7	1.42	49.9	22,794
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	3.66	3.14	8.63	27.0	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,475	12,475	0.49	1.09	1.29	12,814
Area	_	6.45	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	7,890	7,890	0.54	0.05	_	7,918
Water	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Waste	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	3.85	9.68	10.3	28.4	0.13	0.26	8.37	8.63	0.26	2.17	2.43	284	20,983	21,267	29.7	1.43	1.32	22,437
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	3.64	3.12	8.75	27.6	0.12	0.13	8.28	8.41	0.13	2.15	2.27	_	12,546	12,546	0.49	1.09	21.5	12,906
Area	1.42	7.76	0.07	7.98	< 0.005	0.01	_	0.01	0.01	_	0.01	_	32.8	32.8	< 0.005	< 0.005	_	32.9
Energy	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	7,890	7,890	0.54	0.05	_	7,918
Water	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125

Waste	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	5.25	11.0	10.5	37.1	0.13	0.28	8.28	8.56	0.27	2.15	2.41	284	21,087	21,371	29.7	1.43	21.6	22,562
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.66	0.57	1.60	5.04	0.02	0.02	1.51	1.54	0.02	0.39	0.42	_	2,077	2,077	0.08	0.18	3.57	2,137
Area	0.26	1.42	0.01	1.46	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.45
Energy	0.03	0.02	0.31	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	_	1,306	1,306	0.09	0.01	_	1,311
Water	_	_	_	_	_	_	_	_	_	_	_	19.5	102	122	2.01	0.05	_	186
Waste	_	_	_	_	_	_	_	_	_	_	_	27.4	0.00	27.4	2.74	0.00	_	96.0
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005
Total	0.96	2.00	1.92	6.76	0.02	0.05	1.51	1.56	0.05	0.39	0.44	46.9	3,491	3,538	4.92	0.24	3.57	3,735

3. Construction Emissions Details

3.1. Demolition (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2				PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		2.62	24.9	21.7	0.03	1.06	_	1.06	0.98	_	0.98	_	3,425	3,425	0.14	0.03	_	3,437
Demolitio n	_	_	_	_	_	_	1.43	1.43	_	0.22	0.22	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.47	4.43	3.87	0.01	0.19	_	0.19	0.17	_	0.17	_	610	610	0.02	< 0.005	_	612
Demolitio n	_	_	_	_	_	_	0.25	0.25	_	0.04	0.04	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.09	0.81	0.71	< 0.005	0.03	_	0.03	0.03	_	0.03	_	101	101	< 0.005	< 0.005	_	101
Demolitio n	_	_	_	_	_	_	0.05	0.05	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.07	0.07	0.07	1.13	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	212	212	0.01	0.01	0.84	215
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.12	0.03	2.09	0.76	0.01	0.02	0.47	0.49	0.02	0.13	0.15	_	1,754	1,754	0.09	0.28	4.06	1,844
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.02	0.18	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	36.3	36.3	< 0.005	< 0.005	0.06	36.8
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.02	0.01	0.39	0.13	< 0.005	< 0.005	0.08	0.09	< 0.005	0.02	0.03	_	312	312	0.02	0.05	0.31	328
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	6.01	6.01	< 0.005	< 0.005	0.01	6.09

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	0.07	0.02	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	< 0.005	_	51.7	51.7	< 0.005	0.01	0.05	54.3

3.2. Demolition (2024) - Mitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		2.62	24.9	21.7	0.03	1.06	_	1.06	0.98	_	0.98	_	3,425	3,425	0.14	0.03	_	3,437
Demolitio n	_	_	_	_	_	_	1.43	1.43	_	0.22	0.22	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.47	4.43	3.87	0.01	0.19	_	0.19	0.17	_	0.17	_	610	610	0.02	< 0.005	_	612
Demolitio n	_	_	_	_	_	_	0.25	0.25	_	0.04	0.04	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.09	0.81	0.71	< 0.005	0.03	_	0.03	0.03	_	0.03	_	101	101	< 0.005	< 0.005	_	101
Demolitio n	_	_	_	_	_	_	0.05	0.05	_	0.01	0.01	_	_	_	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Worker	0.07	0.07	0.07	1.13	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	212	212	0.01	0.01	0.84	215
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.12	0.03	2.09	0.76	0.01	0.02	0.47	0.49	0.02	0.13	0.15	_	1,754	1,754	0.09	0.28	4.06	1,844
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.02	0.18	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	36.3	36.3	< 0.005	< 0.005	0.06	36.8
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.02	0.01	0.39	0.13	< 0.005	< 0.005	0.08	0.09	< 0.005	0.02	0.03	_	312	312	0.02	0.05	0.31	328
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	6.01	6.01	< 0.005	< 0.005	0.01	6.09
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	0.07	0.02	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	< 0.005	_	51.7	51.7	< 0.005	0.01	0.05	54.3

3.3. Site Preparation (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipment		3.65	36.0	32.9	0.05	1.60	_	1.60	1.47	_	1.47	_	5,296	5,296	0.21	0.04		5,314
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.20	1.97	1.80	< 0.005	0.09	_	0.09	0.08	_	0.08	_	290	290	0.01	< 0.005	_	291
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		0.04	0.36	0.33	< 0.005	0.02	_	0.02	0.01	_	0.01	_	48.0	48.0	< 0.005	< 0.005	_	48.2
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-
Worker	0.09	0.08	0.08	1.32	0.00	0.00	0.23	0.23	0.00	0.05	0.05	_	247	247	0.01	0.01	0.97	251
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.06	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	13.0	13.0	< 0.005	< 0.005	0.02	13.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.16	2.16	< 0.005	< 0.005	< 0.005	2.19
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.4. Site Preparation (2024) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		3.65	36.0	32.9	0.05	1.60	_	1.60	1.47	_	1.47	_	5,296	5,296	0.21	0.04	_	5,314
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.20	1.97	1.80	< 0.005	0.09	_	0.09	0.08	_	0.08	_	290	290	0.01	< 0.005	_	291
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.04	0.36	0.33	< 0.005	0.02	_	0.02	0.01	_	0.01	_	48.0	48.0	< 0.005	< 0.005	_	48.2
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.09	0.08	0.08	1.32	0.00	0.00	0.23	0.23	0.00	0.05	0.05	_	247	247	0.01	0.01	0.97	251
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.06	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	13.0	13.0	< 0.005	< 0.005	0.02	13.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.16	2.16	< 0.005	< 0.005	< 0.005	2.19
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2024) - Unmitigated

								brady 101										
Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.90	18.2	18.8	0.03	0.84	_	0.84	0.77	_	0.77	_	2,958	2,958	0.12	0.02	_	2,969

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Off-Road Equipmer		0.33	3.15	3.25	< 0.005	0.14	_	0.14	0.13	_	0.13	_	511	511	0.02	< 0.005	_	512
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		0.06	0.57	0.59	< 0.005	0.03	_	0.03	0.02	_	0.02	_	84.5	84.5	< 0.005	< 0.005	_	84.8
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.07	0.07	0.08	0.96	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	201	201	0.01	0.01	0.02	203
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	-	-	_	-	-	-	_	-	_	_	-	_
Worker	0.01	0.01	0.01	0.17	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	35.2	35.2	< 0.005	< 0.005	0.06	35.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.82	5.82	< 0.005	< 0.005	0.01	5.90
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

23 / 81

3.6. Grading (2024) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Off-Road Equipmen		1.90	18.2	18.8	0.03	0.84	_	0.84	0.77	_	0.77	_	2,958	2,958	0.12	0.02	_	2,969
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.33	3.15	3.25	< 0.005	0.14	_	0.14	0.13	_	0.13	_	511	511	0.02	< 0.005	_	512
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.06	0.57	0.59	< 0.005	0.03	_	0.03	0.02	_	0.02	_	84.5	84.5	< 0.005	< 0.005	_	84.8
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	

Worker	0.07	0.07	0.08	0.96	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	201	201	0.01	0.01	0.02	203
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.17	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	35.2	35.2	< 0.005	< 0.005	0.06	35.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.82	5.82	< 0.005	< 0.005	0.01	5.90
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2025) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E		PM10T	PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.13	10.4	13.0	0.02	0.43	_	0.43	0.40	_	0.40	_	2,398	2,398	0.10	0.02	_	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_		_	_	_	_	_	_	_	_	_		_	_			_	_
Off-Road Equipmen		1.13	10.4	13.0	0.02	0.43	_	0.43	0.40	_	0.40	_	2,398	2,398	0.10	0.02	_	2,406

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Off-Road Equipmer		0.67	6.24	7.79	0.01	0.26	_	0.26	0.24	_	0.24	_	1,432	1,432	0.06	0.01	_	1,437
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		0.12	1.14	1.42	< 0.005	0.05	_	0.05	0.04	_	0.04	_	237	237	0.01	< 0.005	_	238
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	-	_
Worker	0.19	0.17	0.17	2.78	0.00	0.00	0.52	0.52	0.00	0.12	0.12	_	553	553	0.02	0.02	2.02	561
Vendor	0.09	0.04	1.44	0.71	0.01	0.02	0.34	0.36	0.01	0.09	0.10	_	1,269	1,269	0.05	0.18	3.47	1,327
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.19	0.17	0.19	2.36	0.00	0.00	0.52	0.52	0.00	0.12	0.12	_	524	524	0.02	0.02	0.05	531
Vendor	0.09	0.04	1.50	0.71	0.01	0.02	0.34	0.36	0.01	0.09	0.10	_	1,270	1,270	0.05	0.18	0.09	1,324
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Worker	0.11	0.10	0.12	1.48	0.00	0.00	0.31	0.31	0.00	0.07	0.07	_	318	318	0.01	0.01	0.52	322
Vendor	0.05	0.02	0.90	0.42	0.01	0.01	0.20	0.21	0.01	0.06	0.06	_	758	758	0.03	0.11	0.90	791
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Worker	0.02	0.02	0.02	0.27	0.00	0.00	0.06	0.06	0.00	0.01	0.01	-	52.6	52.6	< 0.005	< 0.005	0.09	53.3
Vendor	0.01	< 0.005	0.16	0.08	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	126	126	0.01	0.02	0.15	131
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.8. Building Construction (2025) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.13	10.4	13.0	0.02	0.43	_	0.43	0.40	_	0.40	_	2,398	2,398	0.10	0.02	_	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.13	10.4	13.0	0.02	0.43	_	0.43	0.40	_	0.40	_	2,398	2,398	0.10	0.02	_	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.67	6.24	7.79	0.01	0.26	_	0.26	0.24	_	0.24	_	1,432	1,432	0.06	0.01	_	1,437
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.12	1.14	1.42	< 0.005	0.05	_	0.05	0.04	_	0.04	_	237	237	0.01	< 0.005	_	238

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.19	0.17	0.17	2.78	0.00	0.00	0.52	0.52	0.00	0.12	0.12	_	553	553	0.02	0.02	2.02	561
Vendor	0.09	0.04	1.44	0.71	0.01	0.02	0.34	0.36	0.01	0.09	0.10	_	1,269	1,269	0.05	0.18	3.47	1,327
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.19	0.17	0.19	2.36	0.00	0.00	0.52	0.52	0.00	0.12	0.12	_	524	524	0.02	0.02	0.05	531
Vendor	0.09	0.04	1.50	0.71	0.01	0.02	0.34	0.36	0.01	0.09	0.10	_	1,270	1,270	0.05	0.18	0.09	1,324
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	_	_	_	_	_	_	_	_	-	_	_	_	_	-	-	_	-
Worker	0.11	0.10	0.12	1.48	0.00	0.00	0.31	0.31	0.00	0.07	0.07	_	318	318	0.01	0.01	0.52	322
Vendor	0.05	0.02	0.90	0.42	0.01	0.01	0.20	0.21	0.01	0.06	0.06	_	758	758	0.03	0.11	0.90	791
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.02	0.02	0.02	0.27	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	52.6	52.6	< 0.005	< 0.005	0.09	53.3
Vendor	0.01	< 0.005	0.16	0.08	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	126	126	0.01	0.02	0.15	131
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily,	_		_	_	_	_	_	_	_	_	_		_	_	_	_	_	
Summer (Max)																		
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.71	6.52	8.84	0.01	0.29	_	0.29	0.26	_	0.26	_	1,351	1,351	0.05	0.01	_	1,355
Paving	_	0.56	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	_	_	_
Off-Road Equipmen		0.05	0.41	0.56	< 0.005	0.02	_	0.02	0.02	_	0.02	-	85.1	85.1	< 0.005	< 0.005	_	85.4
Paving	_	0.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.07	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	14.1	14.1	< 0.005	< 0.005	_	14.1
Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.09	0.08	0.10	1.18	0.00	0.00	0.26	0.26	0.00	0.06	0.06	_	262	262	0.01	0.01	0.03	265
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.08	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	16.8	16.8	< 0.005	< 0.005	0.03	17.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.78	2.78	< 0.005	< 0.005	< 0.005	2.81
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.10. Paving (2025) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T			PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.71	6.52	8.84	0.01	0.29	_	0.29	0.26	_	0.26	_	1,351	1,351	0.05	0.01	_	1,355
Paving	_	0.56	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.05	0.41	0.56	< 0.005	0.02	_	0.02	0.02	_	0.02	_	85.1	85.1	< 0.005	< 0.005	_	85.4

Paving	_	0.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		0.01	0.07	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	14.1	14.1	< 0.005	< 0.005	_	14.1
Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.09	0.08	0.10	1.18	0.00	0.00	0.26	0.26	0.00	0.06	0.06	_	262	262	0.01	0.01	0.03	265
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.08	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	16.8	16.8	< 0.005	< 0.005	0.03	17.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	2.78	2.78	< 0.005	< 0.005	< 0.005	2.81
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.13	0.88	1.14	< 0.005	0.03	_	0.03	0.03	_	0.03	_	134	134	0.01	< 0.005	_	134
Architect ural Coatings	_	39.1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Off-Road Equipmen		0.02	0.16	0.20	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	23.8	23.8	< 0.005	< 0.005	_	23.9
Architect ural Coatings	_	6.97	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.03	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	3.94	3.94	< 0.005	< 0.005	_	3.95
Architect ural Coatings	_	1.27	_	-	_	-	_	_	_	_	-	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.11	0.09	0.11	1.32	0.00	0.00	0.29	0.29	0.00	0.07	0.07	_	292	292	0.01	0.01	0.03	296
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	0.02	0.02	0.02	0.25	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	52.8	52.8	< 0.005	< 0.005	0.09	53.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.75	8.75	< 0.005	< 0.005	0.01	8.87
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Architectural Coating (2025) - Mitigated

Location	TOG	ROG				PM10E				PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	<u> </u>	<u> </u>	_	_	<u> </u>	_	<u> </u>	<u> </u>	_	<u> </u>	_	_	_	<u> </u>	<u> </u>	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.13	0.88	1.14	< 0.005	0.03	_	0.03	0.03	_	0.03	_	134	134	0.01	< 0.005	_	134

Architect Coatings	_	20.0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
Off-Road Equipmen		0.02	0.16	0.20	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	23.8	23.8	< 0.005	< 0.005	_	23.9
Architect ural Coatings	_	3.57	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.03	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	3.94	3.94	< 0.005	< 0.005	_	3.95
Architect ural Coatings	_	0.65	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	-	-	_	_	_	_	-	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	0.11	0.09	0.11	1.32	0.00	0.00	0.29	0.29	0.00	0.07	0.07	_	292	292	0.01	0.01	0.03	296
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Worker	0.02	0.02	0.02	0.25	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	52.8	52.8	< 0.005	< 0.005	0.09	53.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.75	8.75	< 0.005	< 0.005	0.01	8.87
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Unrefrige rated Warehou se-No Rail	0.50	0.29	5.94	3.22	0.06	0.09	2.65	2.74	0.09	0.72	0.81	_	6,398	6,398	0.18	0.83	28.5	6,679
General Office Building	2.39	2.16	1.67	19.4	0.05	0.03	4.27	4.30	0.03	1.09	1.11	_	4,738	4,738	0.22	0.18	16.0	4,814
Parking Lot	0.81	0.73	0.56	6.55	0.02	0.01	1.45	1.46	0.01	0.37	0.38	_	1,604	1,604	0.07	0.06	5.42	1,629
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.70	3.18	8.18	29.1	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,740	12,740	0.48	1.08	49.9	13,123

Daily, Winter (Max)	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_
Unrefrige rated Warehou se-No Rail	0.50	0.28	6.18	3.21	0.06	0.09	2.65	2.74	0.09	0.72	0.81	_	6,399	6,399	0.18	0.83	0.74	6,652
General Office Building	2.36	2.13	1.83	17.8	0.04	0.03	4.27	4.30	0.03	1.09	1.11	_	4,540	4,540	0.23	0.19	0.41	4,604
Parking Lot	0.80	0.72	0.62	6.01	0.02	0.01	1.45	1.46	0.01	0.37	0.38	_	1,537	1,537	0.08	0.07	0.14	1,558
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.66	3.14	8.63	27.0	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,475	12,475	0.49	1.09	1.29	12,814
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.09	0.05	1.15	0.59	0.01	0.02	0.48	0.50	0.02	0.13	0.15	_	1,059	1,059	0.03	0.14	2.03	1,103
General Office Building	0.43	0.39	0.34	3.33	0.01	0.01	0.77	0.78	< 0.005	0.20	0.20	_	761	761	0.04	0.03	1.14	772
Parking Lot	0.15	0.13	0.11	1.13	< 0.005	< 0.005	0.26	0.26	< 0.005	0.07	0.07		257	257	0.01	0.01	0.39	261
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.66	0.57	1.60	5.04	0.02	0.02	1.51	1.54	0.02	0.39	0.42	_	2,077	2,077	0.08	0.18	3.57	2,137

4.1.2. Mitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	-	_	_	_	-	-	_	_	-	-	_	-	_
Unrefrige rated Warehou se-No Rail	0.50	0.29	5.94	3.22	0.06	0.09	2.65	2.74	0.09	0.72	0.81	_	6,398	6,398	0.18	0.83	28.5	6,679
General Office Building	2.39	2.16	1.67	19.4	0.05	0.03	4.27	4.30	0.03	1.09	1.11	_	4,738	4,738	0.22	0.18	16.0	4,814
Parking Lot	0.81	0.73	0.56	6.55	0.02	0.01	1.45	1.46	0.01	0.37	0.38	_	1,604	1,604	0.07	0.06	5.42	1,629
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.70	3.18	8.18	29.1	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,740	12,740	0.48	1.08	49.9	13,123
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
Unrefrige rated Warehou se-No Rail	0.50	0.28	6.18	3.21	0.06	0.09	2.65	2.74	0.09	0.72	0.81	_	6,399	6,399	0.18	0.83	0.74	6,652
General Office Building	2.36	2.13	1.83	17.8	0.04	0.03	4.27	4.30	0.03	1.09	1.11	_	4,540	4,540	0.23	0.19	0.41	4,604
Parking Lot	0.80	0.72	0.62	6.01	0.02	0.01	1.45	1.46	0.01	0.37	0.38	_	1,537	1,537	0.08	0.07	0.14	1,558
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.66	3.14	8.63	27.0	0.12	0.13	8.37	8.50	0.13	2.17	2.30	_	12,475	12,475	0.49	1.09	1.29	12,814
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige Warehous Rail		0.05	1.15	0.59	0.01	0.02	0.48	0.50	0.02	0.13	0.15	_	1,059	1,059	0.03	0.14	2.03	1,103
General Office Building	0.43	0.39	0.34	3.33	0.01	0.01	0.77	0.78	< 0.005	0.20	0.20	_	761	761	0.04	0.03	1.14	772
Parking Lot	0.15	0.13	0.11	1.13	< 0.005	< 0.005	0.26	0.26	< 0.005	0.07	0.07	_	257	257	0.01	0.01	0.39	261
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.66	0.57	1.60	5.04	0.02	0.02	1.51	1.54	0.02	0.39	0.42	_	2,077	2,077	0.08	0.18	3.57	2,137

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Cillella													NECCO	0007	0114	Noo	_	000
Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.51	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_		_	491	491	0.03	< 0.005	_	493
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	260	260	0.02	< 0.005	_	261
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	271	271	0.02	< 0.005		272
Industrial Park	_		_	_	_	_			_	_	_	_	4,831	4,831	0.30	0.04	_	4,849
Total	_	_	_		_	_	_	_	_	_	_	_	5,853	5,853	0.36	0.04	_	5,875

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	491	491	0.03	< 0.005	_	493
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	260	260	0.02	< 0.005	_	261
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	271	271	0.02	< 0.005	_	272
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	_	4,831	4,831	0.30	0.04	_	4,849
Total	_	_	_	_	_	_	_	_	_	_	_	_	5,853	5,853	0.36	0.04	_	5,875
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	81.3	81.3	0.01	< 0.005	_	81.6
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	43.0	43.0	< 0.005	< 0.005	_	43.2
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	44.9	44.9	< 0.005	< 0.005	_	45.1
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	_	800	800	0.05	0.01	_	803
Total	_	_	_	_	_	_	_	_	_	_	_	_	969	969	0.06	0.01	_	973

4.2.2. Electricity Emissions By Land Use - Mitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	_	-	-	-	-	-	-	_	-	-	-	-	_	-	-
Unrefrige rated Warehou se-No Rail	_	_	-	_	_	_	-	_	_	_	_	-	491	491	0.03	< 0.005	_	493
General Office Building	_		_	_	_	_	_	_	_	_	_	-	260	260	0.02	< 0.005	_	261
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	271	271	0.02	< 0.005	_	272
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	_	4,831	4,831	0.30	0.04	_	4,849
Total	_	_	_	_	_	_	_	_	_	_	_	_	5,853	5,853	0.36	0.04	_	5,875
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	-	-	_	_	-	-	_	_	_	_	-	491	491	0.03	< 0.005	_	493
General Office Building	_			_	_	_	_	_	_	_	_	_	260	260	0.02	< 0.005	_	261
Parking Lot	_	-	_	_	-	_	_	_	-	_	-	-	271	271	0.02	< 0.005	-	272
Industrial Park	_	-	_	_	-	_	_	-	-	_	-	_	4,831	4,831	0.30	0.04	-	4,849
Total	_	_	_	_	_	_	_	_	_	_	_	_	5,853	5,853	0.36	0.04	_	5,875
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige Warehous Rail		_	_	_	_	_	_	_	_	_	_	_	81.3	81.3	0.01	< 0.005	_	81.6
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	43.0	43.0	< 0.005	< 0.005	_	43.2
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	44.9	44.9	< 0.005	< 0.005	_	45.1
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	_	800	800	0.05	0.01	_	803
Total	_	_	_	_	_	_	_	_	_	_	_	_	969	969	0.06	0.01	_	973

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

		<u> </u>		<i>J</i> ,			·		J .									
Land	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.04	0.02	0.37	0.31	< 0.005	0.03	_	0.03	0.03	_	0.03	_	445	445	0.04	< 0.005	_	446
General Office Building	0.01	< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	81.2	81.2	0.01	< 0.005	_	81.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	0.14	0.07	1.27	1.06	0.01	0.10	_	0.10	0.10	_	0.10	_	1,511	1,511	0.13	< 0.005	_	1,515
Total	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	2,037	2,037	0.18	< 0.005	_	2,043

Daily, Winter (Max)	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.04	0.02	0.37	0.31	< 0.005	0.03	_	0.03	0.03	_	0.03		445	445	0.04	< 0.005	_	446
General Office Building	0.01	< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	81.2	81.2	0.01	< 0.005	_	81.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	0.14	0.07	1.27	1.06	0.01	0.10	_	0.10	0.10	_	0.10	_	1,511	1,511	0.13	< 0.005	_	1,515
Total	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	2,037	2,037	0.18	< 0.005	_	2,043
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.01	< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	73.6	73.6	0.01	< 0.005	_	73.8
General Office Building	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.4	13.4	< 0.005	< 0.005	_	13.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	0.03	0.01	0.23	0.19	< 0.005	0.02	_	0.02	0.02	_	0.02	_	250	250	0.02	< 0.005	_	251
Total	0.03	0.02	0.31	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	_	337	337	0.03	< 0.005	_	338

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	-	-	-	-	-	-	-	-	_	-	-	-	_	_	-
Unrefrige rated Warehou se-No Rail	0.04	0.02	0.37	0.31	< 0.005	0.03	_	0.03	0.03	_	0.03	_	445	445	0.04	< 0.005	_	446
General Office Building	0.01	< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	81.2	81.2	0.01	< 0.005	_	81.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Industrial Park	0.14	0.07	1.27	1.06	0.01	0.10	_	0.10	0.10	_	0.10	_	1,511	1,511	0.13	< 0.005	_	1,515
Total	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	2,037	2,037	0.18	< 0.005	_	2,043
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.04	0.02	0.37	0.31	< 0.005	0.03	_	0.03	0.03	_	0.03	_	445	445	0.04	< 0.005	_	446
General Office Building	0.01	< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	81.2	81.2	0.01	< 0.005	_	81.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Industrial Park	0.14	0.07	1.27	1.06	0.01	0.10	_	0.10	0.10	_	0.10	_	1,511	1,511	0.13	< 0.005	_	1,515
Total	0.19	0.09	1.71	1.43	0.01	0.13	_	0.13	0.13	_	0.13	_	2,037	2,037	0.18	< 0.005	_	2,043
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige Warehous Rail		< 0.005	0.07	0.06	< 0.005	0.01	_	0.01	0.01	_	0.01	_	73.6	73.6	0.01	< 0.005	_	73.8
General Office Building	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.4	13.4	< 0.005	< 0.005	_	13.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	0.03	0.01	0.23	0.19	< 0.005	0.02	_	0.02	0.02	_	0.02	_	250	250	0.02	< 0.005	_	251
Total	0.03	0.02	0.31	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	_	337	337	0.03	< 0.005	_	338

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.75	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	2.07	1.91	0.10	11.7	< 0.005	0.02		0.02	0.02	_	0.02	_	47.9	47.9	< 0.005	< 0.005	_	48.1
Total	2.07	8.36	0.10	11.7	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.9	47.9	< 0.005	< 0.005	_	48.1
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Consum Products	_	5.75	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.45	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.05	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.13	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.26	0.24	0.01	1.46	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.45
Total	0.26	1.42	0.01	1.46	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.45

4.3.2. Mitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.75	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Landsca pe Equipme nt	2.07	1.91	0.10	11.7	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.9	47.9	< 0.005	< 0.005		48.1
Total	2.07	8.36	0.10	11.7	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.9	47.9	< 0.005	< 0.005	_	48.1
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.75	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.45	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.05	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.26	0.24	0.01	1.46	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.45
Total	0.26	1.42	0.01	1.46	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.45

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Land	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	31.9	165	197	3.28	0.08	_	303
General Office Building	_	_	_	_	_	_	_	_	_	_	_	3.41	17.6	21.0	0.35	0.01	_	32.3
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	8.47	8.47	< 0.005	< 0.005	_	8.50
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	82.4	427	509	8.48	0.20	_	782
Total	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	31.9	165	197	3.28	0.08	_	303
General Office Building	_	_	_	_	_	_	_	_	_	_	_	3.41	17.6	21.0	0.35	0.01	_	32.3
Parking Lot	_		_	_	_	_	_	_	_	_	_	0.00	8.47	8.47	< 0.005	< 0.005	_	8.50
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	82.4	427	509	8.48	0.20	_	782
Total	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige rated Warehou se-No	_	_	_	_	_	_	_	_	_	_	_	5.28	27.3	32.6	0.54	0.01	_	50.1
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.56	2.92	3.48	0.06	< 0.005	_	5.35
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	1.40	1.40	< 0.005	< 0.005	_	1.41
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	13.6	70.7	84.3	1.40	0.03	_	129
Total	_	_	_	_	_	_	_	_	_	_	_	19.5	102	122	2.01	0.05	_	186

4.4.2. Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_		_	_	_		31.9	165	197	3.28	0.08	_	303
General Office Building	_	_	_	_	_	_	_	_	_	_	_	3.41	17.6	21.0	0.35	0.01	_	32.3
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	8.47	8.47	< 0.005	< 0.005	_	8.50
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	82.4	427	509	8.48	0.20	_	782
Total	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_							_	31.9	165	197	3.28	0.08		303
General Office Building	_	_	_	_	_	_	_	_	_	_	_	3.41	17.6	21.0	0.35	0.01	_	32.3
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	8.47	8.47	< 0.005	< 0.005	_	8.50
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	82.4	427	509	8.48	0.20	_	782
Total	_	_	_	_	_	_	_	_	_	_	_	118	618	736	12.1	0.29	_	1,125
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	5.28	27.3	32.6	0.54	0.01	_	50.1
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.56	2.92	3.48	0.06	< 0.005	_	5.35
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	1.40	1.40	< 0.005	< 0.005	_	1.41
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	13.6	70.7	84.3	1.40	0.03	_	129
Total	_	_	_	_	_	_	_	_	_	_	_	19.5	102	122	2.01	0.05	_	186

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T		PM2.5D	1	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	36.5	0.00	36.5	3.65	0.00	_	128
General Office Building	_	_	_	_	_	_	_	_	_	_	_	5.01	0.00	5.01	0.50	0.00	_	17.5
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	124	0.00	124	12.4	0.00	_	435
Total	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	36.5	0.00	36.5	3.65	0.00	_	128
General Office Building	_	_	_	_	_	_	_	_	_	_	_	5.01	0.00	5.01	0.50	0.00	_	17.5
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	_	-	-	-	_	_	_	_	_	_	_	124	0.00	124	12.4	0.00	_	435
Total	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	6.04	0.00	6.04	0.60	0.00	_	21.1
General Office Building	_	_	_	_	_	_	_	_	_	_	_	0.83	0.00	0.83	0.08	0.00	_	2.90
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	20.6	0.00	20.6	2.06	0.00	_	72.0
Total	_	_	_	_	_	_	_	_	_	_	_	27.4	0.00	27.4	2.74	0.00	_	96.0

4.5.2. Mitigated

	TOG									PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	36.5	0.00	36.5	3.65	0.00	_	128
General Office Building	_	_	_	_	_	_	_	_	_	_	_	5.01	0.00	5.01	0.50	0.00	_	17.5
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	124	0.00	124	12.4	0.00	_	435

Total	_	_	_	_	_	_	_	_	_	_		166	0.00	166	16.6	0.00	_	580
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail		_	_	_	_	_	_	_	_	_	_	36.5	0.00	36.5	3.65	0.00	_	128
General Office Building	_	_	_	_	_	_	_	_	_	_		5.01	0.00	5.01	0.50	0.00	_	17.5
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Industrial Park	_	_	_	_	_	_	_	_	_	_	_	124	0.00	124	12.4	0.00	_	435
Total	_	_	_	_	_	_	_	_	_	_	_	166	0.00	166	16.6	0.00	_	580
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	6.04	0.00	6.04	0.60	0.00	_	21.1
General Office Building	_	_	_	_	_	_	_	_	_	_	-	0.83	0.00	0.83	0.08	0.00	_	2.90
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00		0.00
Industrial Park	_	-	_	_	_	_	_	_	_	_	_	20.6	0.00	20.6	2.06	0.00	_	72.0
Total	_	_	_	_	_	_	_	_	_	_	_	27.4	0.00	27.4	2.74	0.00		96.0

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

ontona			ty for dar			uai) and												
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005

4.6.2. Mitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D		PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	 	_	_	_		_	 	 _	 	 	
Iotal					_						

4.7.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
Annual	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_

4.8.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

			,	, ,				· · · · · · · · · · · · · · · · · · ·										
Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_		_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		(,	J, J		,	(o, e.e., .e.		.,	,							
Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
n																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG		NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	<u> </u>	_	_	_	_	_	<u> </u>	_	<u> </u>	_	<u> </u>	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O R																				
	S	pecies	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e

Subtotal —<	
Subtotal —<	
Sequest ered — <t< td=""><td>_</td></t<>	_
ered	
	_ -
Remove — — — — — — — — — — — — — — — — — — —	
d d	
Subtotal — — — — — — — — — — — — — — — — — — —	_ _
Daily, — — — — — — — — — — — — — — — — — — —	_ _
Avoided — — — — — — — — — — — — — — — — — —	
Subtotal — — — — — — — — — — — — — — — — — — —	
Sequest — — — — — — — — — — — — — — — — — — —	- -
Subtotal — — — — — — — — — — — — — — — — — — —	
Remove — — — — — — — — — — — — — — — — — — —	- -
Subtotal — — — — — — — — — — — — — — — — — — —	
	_ _
Annual — — — — — — — — — — — — — — — — — — —	
Avoided — — — — — — — — — — — — — — — — — —	
Subtotal — — — — — — — — — — — — — — — — — — —	
Sequest — — — — — — — — — — — — — — — — — — —	- -
Subtotal — — — — — — — — — — — — — — — — — — —	

Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	TOG	ROG		со	SO2	PM10E		PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Land Use	TOG	ROG		СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	6/1/2024	8/31/2024	5.00	65.0	_
Site Preparation	Site Preparation	9/1/2024	9/29/2024	5.00	20.0	_
Grading	Grading	10/2/2024	12/29/2024	5.00	63.0	_
Building Construction	Building Construction	1/1/2025	10/31/2025	5.00	218	_
Paving	Paving	12/1/2025	12/31/2025	5.00	23.0	_
Architectural Coating	Architectural Coating	10/2/2025	12/31/2025	5.00	65.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Diseas Name	Emileon and Emile	Fuel Torre	Espira Ties	News barrier Davi	Harris Day Day	11	Local Footon
Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

Demolition	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Demolition	Excavators	Diesel	Average	3.00	8.00	36.0	0.38
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Tractors/Loaders/Backh oes	Diesel	Average	3.00	8.00	84.0	0.37
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	3.00	7.00	84.0	0.37
Paving	Pavers	Diesel	Average	1.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	6.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	6.00	36.0	0.38
Paving	Cement and Mortar Mixers	Diesel	Average	2.00	6.00	10.0	0.56
Paving	Tractors/Loaders/Backh oes	Diesel	Average	1.00	8.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
1 Hadd Haillo	-quipinioni Typo	i doi iypo	Linginio Tioi	riamber per bay	riodic r or Buy	riolooponioi	Loud I doto!

Demolition	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Demolition	Excavators	Diesel	Average	3.00	8.00	36.0	0.38
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Tractors/Loaders/Backh oes	Diesel	Average	3.00	8.00	84.0	0.37
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	3.00	7.00	84.0	0.37
Paving	Pavers	Diesel	Average	1.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	6.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	6.00	36.0	0.38
Paving	Cement and Mortar Mixers	Diesel	Average	2.00	6.00	10.0	0.56
Paving	Tractors/Loaders/Backh oes	Diesel	Average	1.00	8.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	_	_	_	_
Demolition	Worker	15.0	18.5	LDA,LDT1,LDT2
Demolition	Vendor	_	10.2	HHDT,MHDT
Demolition	Hauling	16.7	30.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Site Preparation	_	_	_	_
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	_	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	30.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	15.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	40.0	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	40.0	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	20.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_

Architectural Coating	Worker	22.3	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT

5.3.2. Mitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	_	_	_	_
Demolition	Worker	15.0	18.5	LDA,LDT1,LDT2
Demolition	Vendor	_	10.2	HHDT,MHDT
Demolition	Hauling	16.7	30.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Site Preparation	_	_	_	_
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	_	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	30.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	15.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	40.0	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	40.0	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT

Paving	_	_	_	_
Paving	Worker	20.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	22.3	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	ннот,мнот
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	402,000	134,000	12,754

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)		Material Demolished (Ton of Debris)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	4,347	_
Paving	0.00	0.00	0.00	0.00	4.88

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Unrefrigerated Warehouse-No Rail	0.00	0%
General Office Building	0.00	0%
Parking Lot	4.88	100%
Industrial Park	0.00	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2024	0.00	532	0.03	< 0.005
2025	0.00	532	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	75.0	75.0	75.0	27,375	3,000	3,000	3,000	1,095,000
General Office Building	650	650	650	237,250	6,027	6,027	6,027	2,199,735
Parking Lot	220	220	220	80,296	2,040	2,040	2,040	744,493
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	75.0	75.0	75.0	27,375	3,000	3,000	3,000	1,095,000
General Office Building	650	650	650	237,250	6,027	6,027	6,027	2,199,735
Parking Lot	220	220	220	80,296	2,040	2,040	2,040	744,493
Industrial Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	402,000	134,000	12,754

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	336,986	532	0.0330	0.0040	1,387,883
General Office Building	178,203	532	0.0330	0.0040	253,465
Parking Lot	186,214	532	0.0330	0.0040	0.00
Industrial Park	3,314,573	532	0.0330	0.0040	4,714,443

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	336,986	532	0.0330	0.0040	1,387,883
General Office Building	178,203	532	0.0330	0.0040	253,465
Parking Lot	186,214	532	0.0330	0.0040	0.00
Industrial Park	3,314,573	532	0.0330	0.0040	4,714,443

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
		(0)

Unrefrigerated Warehouse-No Rail	16,650,000	0.00
General Office Building	1,777,337	0.00
Parking Lot	0.00	1,094,983
Industrial Park	43,012,500	0.00

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	16,650,000	0.00
General Office Building	1,777,337	0.00
Parking Lot	0.00	1,094,983
Industrial Park	43,012,500	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	67.7	_
General Office Building	9.30	_
Parking Lot	0.00	_
Industrial Park	231	_

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	67.7	_
General Office Building	9.30	_
Parking Lot	0.00	_

Industrial Park	231	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
General Office Building	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0

5.14.2. Mitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
General Office Building	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Equipmont Typo	1 doi 1900	Lingino rioi	realibor por Bay	riodio i oi bay	Tiordopowor	Loud I doloi

5.15.2. Mitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Equipment Type	ruei Type	Engine nei	Number per Day	Hours Fel Day	Horsepower	Load Factor

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type Fuel Type Number per Day Hours per Day Hours per Year Horsepower Load Factor

5.16.2. Process Boilers

Equipment Type Fuel Type Number Boiler Rating (MMBtu/hr) Daily Heat Input (MMBtu/day) Annual Heat Input (MMBtu/yr)

5.17. User Defined

Equipment Type Fuel Type

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres

5.18.1.2. Mitigated

Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Final Acres Final Acres

5.18.1.2. Mitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
nee type	rtamber	Liberion Caroa (miny car)	ratarar Gas Garca (Stary Gar)

5.18.2.2. Mitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
nee type	Trainisc.	Liberially Carea (ittriff)	Hatara Gas Gavea (Stary Gar)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	5.08	annual days of extreme heat
Extreme Precipitation	4.20	annual days with precipitation above 20 mm
Sea Level Rise	_	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ³/₄ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	1	1	2
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	24.9
AQ-PM	81.4
AQ-DPM	78.2
Drinking Water	69.1
Lead Risk Housing	45.4
Pesticides	38.0
Toxic Releases	99.2
Traffic	68.5
Effect Indicators	_
CleanUp Sites	89.0
Groundwater	87.3
Haz Waste Facilities/Generators	67.0
Impaired Water Bodies	96.3
Solid Waste	91.0

Sensitive Population	_
Asthma	67.8
Cardio-vascular	66.2
Low Birth Weights	77.0
Socioeconomic Factor Indicators	_
Education	31.4
Housing	16.3
Linguistic	76.6
Poverty	33.2
Unemployment	2.73

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	74.48992686
Employed	96.16322341
Median HI	44.11651482
Education	_
Bachelor's or higher	57.65430515
High school enrollment	100
Preschool enrollment	51.48209932
Transportation	_
Auto Access	65.16104196
Active commuting	20.26177339
Social	_
2-parent households	79.14795329

Voting	26.57513153
Neighborhood	_
Alcohol availability	33.14513025
Park access	45.65635827
Retail density	75.59348133
Supermarket access	71.26908764
Tree canopy	22.73835493
Housing	_
Homeownership	72.97574747
Housing habitability	93.10920056
Low-inc homeowner severe housing cost burden	82.1891441
Low-inc renter severe housing cost burden	91.4282048
Uncrowded housing	62.10701912
Health Outcomes	_
Insured adults	45.18157321
Arthritis	0.0
Asthma ER Admissions	22.9
High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	84.1
Cognitively Disabled	95.5
Physically Disabled	41.1
Heart Attack ER Admissions	23.3

Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	67.2
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	_
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	62.5
Elderly	6.3
English Speaking	13.2
Foreign-born	90.3
Outdoor Workers	64.2
Climate Change Adaptive Capacity	_
Impervious Surface Cover	9.7
Traffic Density	57.1
Traffic Access	56.5
Other Indices	_
Hardship	41.8
Other Decision Support	_
2016 Voting	15.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	83.0
Healthy Places Index Score for Project Location (b)	67.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	Building footprint acreage for Mixed use stacking calls for only the highest default lot acreage and to zero out the other uses. The traffic analysis uses General Light Industry for the industrial use for the Project. However, since CalEEMod limits General Light Industry to 50 ksqft, and trip generation and fleet mixes are manually entered, Unrefrigerated Warehouse was used for this analysis. Landscaped area was put under the parking lot and applies to the whole Project site.
Construction: Construction Phases	per construction questionnaire
Construction: Trips and VMT	Based on client provided information and the near by concrete and asphalt waste and recycling facilities. Exact waste and recycling facilities to be used are not determined yet, so a conservative estimate was used for 30 miles.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Operations: Vehicle Data	All project truck trips (40 trucks/day) placed on General Heavy Industrial (Industrial, 72 KSF) land use. All auto trips (457 daily trips) for daily operations (excluding special events) placed on General Office land use. Special event trips (220 trips) are placed on the parking lot land use and assume the maximum trips on the day of an event.
Operations: Fleet Mix	General Heavy Industrial (72 ksf, first land use in table) represents all truck trips, while General Office Building represents all auto trips for daily operations. Special event trips are placed on the parking lot land use.
Operations: Refrigerants	Added refrigerant for industrial warehouse
Construction: Dust From Material Movement	no export or import will occur as onsite earthwork is balanced

Emergency Backup Generator Emissions

nergency backup denerator i					UNMITIGAT	TED						
					Hours/Year		HP-hr per	Total hp-hr				
	Fuel Type	Quantity	HP	LF	per Unit	Day	day	per year				
Standard Generator	Diesel	1	400	0.74	50	1	400	20,000				
	Emissions Ra	tes (g/hp-hr)										
	HC	ROG	TOG	CO	NO_X	CO ₂	PM_{10}	PM _{2.5}	PM	SO_X	CH ₄	
Standard Warehouse	0.140	1.020	1.120	2.600	2.850	521.640	0.150	0.150	0.150	0.005	0.021	
urce: User Guide for CalEEMod Version 20	022.1, Appendix	G, Table G-40.										
	Emissions (po	ounds/day)										
	НС	ROG	TOG	со	NO _x	CO ₂	PM ₁₀	PM _{2.5}	PM	so_x	CH₄	
Standard Warehouse	0.12	0.90	0.99	2.29	2.51	460.01	0.13	0.13	0.13	0.00	0.00	
Total	0.12	0.90	0.99	2.29	2.51	460.01	0.13	0.13	0.13	0.00	0.00	
	Emissions (to	ins/vear)										
	HC	ROG	TOG	со	NO_X	CO ₂	PM ₁₀	PM _{2.5}	PM	so _x	CH ₄	
Standard Warehouse	0.00	0.02	0.02	0.06	0.06	11.50	0.00	0.00	0.00	0.00	0.00	
Total	0.00	0.02	0.02	0.06	0.06	11.50	0.00	0.00	0.00	0.00	0.00	
												_
IG Emissions (metric tons)	CO ₂										CH₄	C
oject	10.43										0.00	10